Metamath Proof Explorer


Theorem eulerpartlem1

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 27-Aug-2017) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypotheses eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
eulerpart.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
eulerpart.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
eulerpart.h 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin }
eulerpart.m 𝑀 = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
Assertion eulerpartlem1 𝑀 : 𝐻1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin )

Proof

Step Hyp Ref Expression
1 eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
2 eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
3 eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
4 eulerpart.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
5 eulerpart.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
6 eulerpart.h 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin }
7 eulerpart.m 𝑀 = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
8 nnex ℕ ∈ V
9 4 8 rabex2 𝐽 ∈ V
10 nn0ex 0 ∈ V
11 eqid ( 𝑟 ∈ ( 𝒫 ℕ0m 𝐽 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } ) = ( 𝑟 ∈ ( 𝒫 ℕ0m 𝐽 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
12 9 10 11 6 fpwrelmapffs ( ( 𝑟 ∈ ( 𝒫 ℕ0m 𝐽 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } ) ↾ 𝐻 ) : 𝐻1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin )
13 ssrab2 { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ⊆ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 )
14 10 pwex 𝒫 ℕ0 ∈ V
15 inss1 ( 𝒫 ℕ0 ∩ Fin ) ⊆ 𝒫 ℕ0
16 mapss ( ( 𝒫 ℕ0 ∈ V ∧ ( 𝒫 ℕ0 ∩ Fin ) ⊆ 𝒫 ℕ0 ) → ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ⊆ ( 𝒫 ℕ0m 𝐽 ) )
17 14 15 16 mp2an ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ⊆ ( 𝒫 ℕ0m 𝐽 )
18 13 17 sstri { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ⊆ ( 𝒫 ℕ0m 𝐽 )
19 6 18 eqsstri 𝐻 ⊆ ( 𝒫 ℕ0m 𝐽 )
20 resmpt ( 𝐻 ⊆ ( 𝒫 ℕ0m 𝐽 ) → ( ( 𝑟 ∈ ( 𝒫 ℕ0m 𝐽 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } ) ↾ 𝐻 ) = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } ) )
21 19 20 ax-mp ( ( 𝑟 ∈ ( 𝒫 ℕ0m 𝐽 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } ) ↾ 𝐻 ) = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
22 7 21 eqtr4i 𝑀 = ( ( 𝑟 ∈ ( 𝒫 ℕ0m 𝐽 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } ) ↾ 𝐻 )
23 f1oeq1 ( 𝑀 = ( ( 𝑟 ∈ ( 𝒫 ℕ0m 𝐽 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } ) ↾ 𝐻 ) → ( 𝑀 : 𝐻1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↔ ( ( 𝑟 ∈ ( 𝒫 ℕ0m 𝐽 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } ) ↾ 𝐻 ) : 𝐻1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) )
24 22 23 ax-mp ( 𝑀 : 𝐻1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↔ ( ( 𝑟 ∈ ( 𝒫 ℕ0m 𝐽 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } ) ↾ 𝐻 ) : 𝐻1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) )
25 12 24 mpbir 𝑀 : 𝐻1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin )