| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
| 2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
| 3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
| 4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
| 5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
| 6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
| 7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
| 8 |
|
fzfid |
⊢ ( ⊤ → ( 1 ... 𝑁 ) ∈ Fin ) |
| 9 |
|
fzfi |
⊢ ( 0 ... 𝑁 ) ∈ Fin |
| 10 |
|
snfi |
⊢ { 0 } ∈ Fin |
| 11 |
9 10
|
ifcli |
⊢ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ∈ Fin |
| 12 |
11
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℕ ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ∈ Fin ) |
| 13 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) → ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ) → ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) |
| 15 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ ( 1 ... 𝑁 ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) = { 0 } ) |
| 16 |
|
eqimss |
⊢ ( if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) = { 0 } → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ⊆ { 0 } ) |
| 17 |
14 15 16
|
3syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ℕ ∖ ( 1 ... 𝑁 ) ) ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ⊆ { 0 } ) |
| 18 |
8 12 17
|
ixpfi2 |
⊢ ( ⊤ → X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ∈ Fin ) |
| 19 |
18
|
mptru |
⊢ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ∈ Fin |
| 20 |
1
|
eulerpartleme |
⊢ ( 𝑔 ∈ 𝑃 ↔ ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ) |
| 21 |
|
ffn |
⊢ ( 𝑔 : ℕ ⟶ ℕ0 → 𝑔 Fn ℕ ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) → 𝑔 Fn ℕ ) |
| 23 |
|
ffvelcdm |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℕ0 ) |
| 24 |
23
|
3ad2antl1 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℕ0 ) |
| 25 |
24
|
nn0red |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) |
| 26 |
|
nnre |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) |
| 27 |
26
|
adantl |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 28 |
25 27
|
remulcld |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ∈ ℝ ) |
| 29 |
|
cnvimass |
⊢ ( ◡ 𝑔 “ ℕ ) ⊆ dom 𝑔 |
| 30 |
|
fdm |
⊢ ( 𝑔 : ℕ ⟶ ℕ0 → dom 𝑔 = ℕ ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → dom 𝑔 = ℕ ) |
| 32 |
29 31
|
sseqtrid |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ( ◡ 𝑔 “ ℕ ) ⊆ ℕ ) |
| 33 |
32
|
sselda |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → 𝑘 ∈ ℕ ) |
| 34 |
|
ffvelcdm |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ 𝑘 ∈ ℕ ) → ( 𝑔 ‘ 𝑘 ) ∈ ℕ0 ) |
| 35 |
34
|
adantlr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ℕ ) → ( 𝑔 ‘ 𝑘 ) ∈ ℕ0 ) |
| 36 |
33 35
|
syldan |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( 𝑔 ‘ 𝑘 ) ∈ ℕ0 ) |
| 37 |
33
|
nnnn0d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → 𝑘 ∈ ℕ0 ) |
| 38 |
36 37
|
nn0mulcld |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ) |
| 39 |
38
|
nn0cnd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℂ ) |
| 40 |
|
simpl |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → 𝑔 : ℕ ⟶ ℕ0 ) |
| 41 |
|
nnex |
⊢ ℕ ∈ V |
| 42 |
|
fcdmnn0supp |
⊢ ( ( ℕ ∈ V ∧ 𝑔 : ℕ ⟶ ℕ0 ) → ( 𝑔 supp 0 ) = ( ◡ 𝑔 “ ℕ ) ) |
| 43 |
41 42
|
mpan |
⊢ ( 𝑔 : ℕ ⟶ ℕ0 → ( 𝑔 supp 0 ) = ( ◡ 𝑔 “ ℕ ) ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ( 𝑔 supp 0 ) = ( ◡ 𝑔 “ ℕ ) ) |
| 45 |
|
eqimss |
⊢ ( ( 𝑔 supp 0 ) = ( ◡ 𝑔 “ ℕ ) → ( 𝑔 supp 0 ) ⊆ ( ◡ 𝑔 “ ℕ ) ) |
| 46 |
44 45
|
syl |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ( 𝑔 supp 0 ) ⊆ ( ◡ 𝑔 “ ℕ ) ) |
| 47 |
41
|
a1i |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ℕ ∈ V ) |
| 48 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 49 |
48
|
a1i |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → 0 ∈ ℕ0 ) |
| 50 |
40 46 47 49
|
suppssr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( 𝑔 ‘ 𝑘 ) = 0 ) |
| 51 |
50
|
oveq1d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = ( 0 · 𝑘 ) ) |
| 52 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) → 𝑘 ∈ ℕ ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → 𝑘 ∈ ℕ ) |
| 54 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 55 |
|
mul02 |
⊢ ( 𝑘 ∈ ℂ → ( 0 · 𝑘 ) = 0 ) |
| 56 |
53 54 55
|
3syl |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( 0 · 𝑘 ) = 0 ) |
| 57 |
51 56
|
eqtrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 0 ) |
| 58 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 59 |
58
|
eqimssi |
⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
| 60 |
59
|
a1i |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ℕ ⊆ ( ℤ≥ ‘ 1 ) ) |
| 61 |
32 39 57 60
|
sumss |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 62 |
|
simpr |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ( ◡ 𝑔 “ ℕ ) ∈ Fin ) |
| 63 |
62 38
|
fsumnn0cl |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ) |
| 64 |
61 63
|
eqeltrrd |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ) |
| 65 |
|
eleq1 |
⊢ ( Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 → ( Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) |
| 66 |
64 65
|
syl5ibcom |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ( Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 → 𝑁 ∈ ℕ0 ) ) |
| 67 |
66
|
3impia |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) → 𝑁 ∈ ℕ0 ) |
| 68 |
67
|
adantr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 69 |
68
|
nn0red |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 70 |
24
|
nn0ge0d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 0 ≤ ( 𝑔 ‘ 𝑥 ) ) |
| 71 |
|
nnge1 |
⊢ ( 𝑥 ∈ ℕ → 1 ≤ 𝑥 ) |
| 72 |
71
|
adantl |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 1 ≤ 𝑥 ) |
| 73 |
25 27 70 72
|
lemulge11d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ) |
| 74 |
62
|
adantr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → ( ◡ 𝑔 “ ℕ ) ∈ Fin ) |
| 75 |
38
|
nn0red |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℝ ) |
| 76 |
75
|
adantlr |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℝ ) |
| 77 |
38
|
nn0ge0d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → 0 ≤ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 78 |
77
|
adantlr |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → 0 ≤ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 80 |
|
id |
⊢ ( 𝑘 = 𝑥 → 𝑘 = 𝑥 ) |
| 81 |
79 80
|
oveq12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ) |
| 82 |
|
simprr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) |
| 83 |
74 76 78 81 82
|
fsumge1 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 84 |
83
|
expr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) ) |
| 85 |
|
eldif |
⊢ ( 𝑥 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ↔ ( 𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) |
| 86 |
57
|
ralrimiva |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) → ∀ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 0 ) |
| 87 |
81
|
eqeq1d |
⊢ ( 𝑘 = 𝑥 → ( ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 0 ↔ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) = 0 ) ) |
| 88 |
87
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 0 ∧ 𝑥 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) = 0 ) |
| 89 |
86 88
|
sylan |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ( ℕ ∖ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) = 0 ) |
| 90 |
85 89
|
sylan2br |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) = 0 ) |
| 91 |
62
|
adantr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → ( ◡ 𝑔 “ ℕ ) ∈ Fin ) |
| 92 |
38
|
adantlr |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℕ0 ) |
| 93 |
92
|
nn0red |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ∈ ℝ ) |
| 94 |
92
|
nn0ge0d |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ) → 0 ≤ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 95 |
91 93 94
|
fsumge0 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → 0 ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 96 |
95
|
adantrr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → 0 ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 97 |
90 96
|
eqbrtrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ ( 𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 98 |
97
|
expr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → ( ¬ 𝑥 ∈ ( ◡ 𝑔 “ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) ) |
| 99 |
84 98
|
pm2.61d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 100 |
61
|
adantr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → Σ 𝑘 ∈ ( ◡ 𝑔 “ ℕ ) ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 101 |
99 100
|
breqtrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 102 |
101
|
3adantl3 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) ) |
| 103 |
|
simpl3 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) |
| 104 |
102 103
|
breqtrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ 𝑁 ) |
| 105 |
25 28 69 73 104
|
letrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ≤ 𝑁 ) |
| 106 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 107 |
24 106
|
eleqtrdi |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 108 |
68
|
nn0zd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 109 |
|
elfz5 |
⊢ ( ( ( 𝑔 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ↔ ( 𝑔 ‘ 𝑥 ) ≤ 𝑁 ) ) |
| 110 |
107 108 109
|
syl2anc |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ↔ ( 𝑔 ‘ 𝑥 ) ≤ 𝑁 ) ) |
| 111 |
105 110
|
mpbird |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ) |
| 112 |
111
|
adantr |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ ( 0 ... 𝑁 ) ) |
| 113 |
|
iftrue |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) = ( 0 ... 𝑁 ) ) |
| 114 |
113
|
adantl |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) = ( 0 ... 𝑁 ) ) |
| 115 |
112 114
|
eleqtrrd |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
| 116 |
|
nnge1 |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ → 1 ≤ ( 𝑔 ‘ 𝑥 ) ) |
| 117 |
|
nnnn0 |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) |
| 118 |
117
|
adantl |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ0 ) |
| 119 |
118
|
nn0ge0d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 0 ≤ 𝑥 ) |
| 120 |
|
lemulge12 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) ∧ ( 0 ≤ 𝑥 ∧ 1 ≤ ( 𝑔 ‘ 𝑥 ) ) ) → 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ) |
| 121 |
120
|
expr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ ( 𝑔 ‘ 𝑥 ) ∈ ℝ ) ∧ 0 ≤ 𝑥 ) → ( 1 ≤ ( 𝑔 ‘ 𝑥 ) → 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ) ) |
| 122 |
27 25 119 121
|
syl21anc |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 1 ≤ ( 𝑔 ‘ 𝑥 ) → 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ) ) |
| 123 |
|
letr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ∧ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ 𝑁 ) → 𝑥 ≤ 𝑁 ) ) |
| 124 |
27 28 69 123
|
syl3anc |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ∧ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) ≤ 𝑁 ) → 𝑥 ≤ 𝑁 ) ) |
| 125 |
104 124
|
mpan2d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ≤ ( ( 𝑔 ‘ 𝑥 ) · 𝑥 ) → 𝑥 ≤ 𝑁 ) ) |
| 126 |
122 125
|
syld |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 1 ≤ ( 𝑔 ‘ 𝑥 ) → 𝑥 ≤ 𝑁 ) ) |
| 127 |
116 126
|
syl5 |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ → 𝑥 ≤ 𝑁 ) ) |
| 128 |
|
simpr |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ ) |
| 129 |
128 58
|
eleqtrdi |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
| 130 |
|
elfz5 |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↔ 𝑥 ≤ 𝑁 ) ) |
| 131 |
129 108 130
|
syl2anc |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↔ 𝑥 ≤ 𝑁 ) ) |
| 132 |
127 131
|
sylibrd |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ → 𝑥 ∈ ( 1 ... 𝑁 ) ) ) |
| 133 |
132
|
con3d |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ¬ 𝑥 ∈ ( 1 ... 𝑁 ) → ¬ ( 𝑔 ‘ 𝑥 ) ∈ ℕ ) ) |
| 134 |
|
elnn0 |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ0 ↔ ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝑔 ‘ 𝑥 ) = 0 ) ) |
| 135 |
24 134
|
sylib |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝑔 ‘ 𝑥 ) = 0 ) ) |
| 136 |
135
|
ord |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ¬ ( 𝑔 ‘ 𝑥 ) ∈ ℕ → ( 𝑔 ‘ 𝑥 ) = 0 ) ) |
| 137 |
133 136
|
syld |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( ¬ 𝑥 ∈ ( 1 ... 𝑁 ) → ( 𝑔 ‘ 𝑥 ) = 0 ) ) |
| 138 |
137
|
imp |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑔 ‘ 𝑥 ) = 0 ) |
| 139 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑥 ) ∈ V |
| 140 |
139
|
elsn |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∈ { 0 } ↔ ( 𝑔 ‘ 𝑥 ) = 0 ) |
| 141 |
138 140
|
sylibr |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ { 0 } ) |
| 142 |
15
|
adantl |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) = { 0 } ) |
| 143 |
141 142
|
eleqtrrd |
⊢ ( ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) ∧ ¬ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑔 ‘ 𝑥 ) ∈ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
| 144 |
115 143
|
pm2.61dan |
⊢ ( ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
| 145 |
144
|
ralrimiva |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) → ∀ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) ∈ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
| 146 |
|
vex |
⊢ 𝑔 ∈ V |
| 147 |
146
|
elixp |
⊢ ( 𝑔 ∈ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ↔ ( 𝑔 Fn ℕ ∧ ∀ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) ∈ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) ) |
| 148 |
22 145 147
|
sylanbrc |
⊢ ( ( 𝑔 : ℕ ⟶ ℕ0 ∧ ( ◡ 𝑔 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑔 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) → 𝑔 ∈ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
| 149 |
20 148
|
sylbi |
⊢ ( 𝑔 ∈ 𝑃 → 𝑔 ∈ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) |
| 150 |
149
|
ssriv |
⊢ 𝑃 ⊆ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) |
| 151 |
|
ssfi |
⊢ ( ( X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ∈ Fin ∧ 𝑃 ⊆ X 𝑥 ∈ ℕ if ( 𝑥 ∈ ( 1 ... 𝑁 ) , ( 0 ... 𝑁 ) , { 0 } ) ) → 𝑃 ∈ Fin ) |
| 152 |
19 150 151
|
mp2an |
⊢ 𝑃 ∈ Fin |