Metamath Proof Explorer


Theorem eulerpartlemd

Description: Lemma for eulerpart : D is the set of distinct part. of N . (Contributed by Thierry Arnoux, 11-Aug-2017)

Ref Expression
Hypotheses eulerpart.p P=f0|f-1Finkfkk=N
eulerpart.o O=gP|ng-1¬2n
eulerpart.d D=gP|ngn1
Assertion eulerpartlemd ADAPA01

Proof

Step Hyp Ref Expression
1 eulerpart.p P=f0|f-1Finkfkk=N
2 eulerpart.o O=gP|ng-1¬2n
3 eulerpart.d D=gP|ngn1
4 fveq1 g=Agn=An
5 4 breq1d g=Agn1An1
6 5 ralbidv g=Angn1nAn1
7 6 3 elrab2 ADAPnAn1
8 2z 2
9 fzoval 20..^2=021
10 8 9 ax-mp 0..^2=021
11 fzo0to2pr 0..^2=01
12 2m1e1 21=1
13 12 oveq2i 021=01
14 10 11 13 3eqtr3i 01=01
15 14 eleq2i An01An01
16 1 eulerpartleme APA:0A-1FinkAkk=N
17 16 simp1bi APA:0
18 17 ffvelcdmda APnAn0
19 1nn0 10
20 elfz2nn0 An01An010An1
21 df-3an An010An1An010An1
22 20 21 bitri An01An010An1
23 22 baib An010An01An1
24 18 19 23 sylancl APnAn01An1
25 15 24 bitr2id APnAn1An01
26 25 ralbidva APnAn1nAn01
27 17 ffund APFunA
28 fdm A:0domA=
29 eqimss2 domA=domA
30 17 28 29 3syl APdomA
31 funimass4 FunAdomAA01nAn01
32 27 30 31 syl2anc APA01nAn01
33 26 32 bitr4d APnAn1A01
34 33 pm5.32i APnAn1APA01
35 7 34 bitri ADAPA01