| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eupick |  |-  ( ( E! x ph /\ E. x ( ph /\ ps ) ) -> ( ph -> ps ) ) | 
						
							| 2 | 1 | 3adant2 |  |-  ( ( E! x ph /\ E! x ps /\ E. x ( ph /\ ps ) ) -> ( ph -> ps ) ) | 
						
							| 3 |  | exancom |  |-  ( E. x ( ph /\ ps ) <-> E. x ( ps /\ ph ) ) | 
						
							| 4 |  | eupick |  |-  ( ( E! x ps /\ E. x ( ps /\ ph ) ) -> ( ps -> ph ) ) | 
						
							| 5 | 3 4 | sylan2b |  |-  ( ( E! x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) ) | 
						
							| 6 | 5 | 3adant1 |  |-  ( ( E! x ph /\ E! x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) ) | 
						
							| 7 | 2 6 | impbid |  |-  ( ( E! x ph /\ E! x ps /\ E. x ( ph /\ ps ) ) -> ( ph <-> ps ) ) |