Metamath Proof Explorer


Theorem eupickb

Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994) (Proof shortened by Wolf Lammen, 27-Dec-2018)

Ref Expression
Assertion eupickb ∃!xφ∃!xψxφψφψ

Proof

Step Hyp Ref Expression
1 eupick ∃!xφxφψφψ
2 1 3adant2 ∃!xφ∃!xψxφψφψ
3 exancom xφψxψφ
4 eupick ∃!xψxψφψφ
5 3 4 sylan2b ∃!xψxφψψφ
6 5 3adant1 ∃!xφ∃!xψxφψψφ
7 2 6 impbid ∃!xφ∃!xψxφψφψ