| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsvarsrng.q |
|- Q = ( ( I evalSub S ) ` R ) |
| 2 |
|
evlsvarsrng.o |
|- O = ( I eval S ) |
| 3 |
|
evlsvarsrng.v |
|- V = ( I mVar U ) |
| 4 |
|
evlsvarsrng.u |
|- U = ( S |`s R ) |
| 5 |
|
evlsvarsrng.b |
|- B = ( Base ` S ) |
| 6 |
|
evlsvarsrng.i |
|- ( ph -> I e. A ) |
| 7 |
|
evlsvarsrng.s |
|- ( ph -> S e. CRing ) |
| 8 |
|
evlsvarsrng.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
| 9 |
|
evlsvarsrng.x |
|- ( ph -> X e. I ) |
| 10 |
1 3 4 5 6 7 8 9
|
evlsvar |
|- ( ph -> ( Q ` ( V ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
| 11 |
2 5
|
evlval |
|- O = ( ( I evalSub S ) ` B ) |
| 12 |
11
|
a1i |
|- ( ph -> O = ( ( I evalSub S ) ` B ) ) |
| 13 |
12
|
fveq1d |
|- ( ph -> ( O ` ( V ` X ) ) = ( ( ( I evalSub S ) ` B ) ` ( V ` X ) ) ) |
| 14 |
3
|
a1i |
|- ( ph -> V = ( I mVar U ) ) |
| 15 |
|
eqid |
|- ( I mVar S ) = ( I mVar S ) |
| 16 |
15 6 8 4
|
subrgmvr |
|- ( ph -> ( I mVar S ) = ( I mVar U ) ) |
| 17 |
5
|
ressid |
|- ( S e. CRing -> ( S |`s B ) = S ) |
| 18 |
7 17
|
syl |
|- ( ph -> ( S |`s B ) = S ) |
| 19 |
18
|
eqcomd |
|- ( ph -> S = ( S |`s B ) ) |
| 20 |
19
|
oveq2d |
|- ( ph -> ( I mVar S ) = ( I mVar ( S |`s B ) ) ) |
| 21 |
14 16 20
|
3eqtr2d |
|- ( ph -> V = ( I mVar ( S |`s B ) ) ) |
| 22 |
21
|
fveq1d |
|- ( ph -> ( V ` X ) = ( ( I mVar ( S |`s B ) ) ` X ) ) |
| 23 |
22
|
fveq2d |
|- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( V ` X ) ) = ( ( ( I evalSub S ) ` B ) ` ( ( I mVar ( S |`s B ) ) ` X ) ) ) |
| 24 |
|
eqid |
|- ( ( I evalSub S ) ` B ) = ( ( I evalSub S ) ` B ) |
| 25 |
|
eqid |
|- ( I mVar ( S |`s B ) ) = ( I mVar ( S |`s B ) ) |
| 26 |
|
eqid |
|- ( S |`s B ) = ( S |`s B ) |
| 27 |
|
crngring |
|- ( S e. CRing -> S e. Ring ) |
| 28 |
5
|
subrgid |
|- ( S e. Ring -> B e. ( SubRing ` S ) ) |
| 29 |
7 27 28
|
3syl |
|- ( ph -> B e. ( SubRing ` S ) ) |
| 30 |
24 25 26 5 6 7 29 9
|
evlsvar |
|- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( I mVar ( S |`s B ) ) ` X ) ) = ( g e. ( B ^m I ) |-> ( g ` X ) ) ) |
| 31 |
13 23 30
|
3eqtrrd |
|- ( ph -> ( g e. ( B ^m I ) |-> ( g ` X ) ) = ( O ` ( V ` X ) ) ) |
| 32 |
10 31
|
eqtrd |
|- ( ph -> ( Q ` ( V ` X ) ) = ( O ` ( V ` X ) ) ) |