| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgmvr.v |  |-  V = ( I mVar R ) | 
						
							| 2 |  | subrgmvr.i |  |-  ( ph -> I e. W ) | 
						
							| 3 |  | subrgmvr.r |  |-  ( ph -> T e. ( SubRing ` R ) ) | 
						
							| 4 |  | subrgmvr.h |  |-  H = ( R |`s T ) | 
						
							| 5 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 6 | 4 5 | subrg1 |  |-  ( T e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` H ) ) | 
						
							| 7 | 3 6 | syl |  |-  ( ph -> ( 1r ` R ) = ( 1r ` H ) ) | 
						
							| 8 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 9 | 4 8 | subrg0 |  |-  ( T e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` H ) ) | 
						
							| 10 | 3 9 | syl |  |-  ( ph -> ( 0g ` R ) = ( 0g ` H ) ) | 
						
							| 11 | 7 10 | ifeq12d |  |-  ( ph -> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) = if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) | 
						
							| 12 | 11 | mpteq2dv |  |-  ( ph -> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) = ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) ) | 
						
							| 13 | 12 | mpteq2dv |  |-  ( ph -> ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) ) ) | 
						
							| 14 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 15 |  | subrgrcl |  |-  ( T e. ( SubRing ` R ) -> R e. Ring ) | 
						
							| 16 | 3 15 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 17 | 1 14 8 5 2 16 | mvrfval |  |-  ( ph -> V = ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) | 
						
							| 18 |  | eqid |  |-  ( I mVar H ) = ( I mVar H ) | 
						
							| 19 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 20 |  | eqid |  |-  ( 1r ` H ) = ( 1r ` H ) | 
						
							| 21 | 4 | ovexi |  |-  H e. _V | 
						
							| 22 | 21 | a1i |  |-  ( ph -> H e. _V ) | 
						
							| 23 | 18 14 19 20 2 22 | mvrfval |  |-  ( ph -> ( I mVar H ) = ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) ) ) | 
						
							| 24 | 13 17 23 | 3eqtr4d |  |-  ( ph -> V = ( I mVar H ) ) |