Step |
Hyp |
Ref |
Expression |
1 |
|
subrgmvr.v |
|- V = ( I mVar R ) |
2 |
|
subrgmvr.i |
|- ( ph -> I e. W ) |
3 |
|
subrgmvr.r |
|- ( ph -> T e. ( SubRing ` R ) ) |
4 |
|
subrgmvr.h |
|- H = ( R |`s T ) |
5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
6 |
4 5
|
subrg1 |
|- ( T e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` H ) ) |
7 |
3 6
|
syl |
|- ( ph -> ( 1r ` R ) = ( 1r ` H ) ) |
8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
9 |
4 8
|
subrg0 |
|- ( T e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` H ) ) |
10 |
3 9
|
syl |
|- ( ph -> ( 0g ` R ) = ( 0g ` H ) ) |
11 |
7 10
|
ifeq12d |
|- ( ph -> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) = if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) |
12 |
11
|
mpteq2dv |
|- ( ph -> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) = ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) ) |
13 |
12
|
mpteq2dv |
|- ( ph -> ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) ) ) |
14 |
|
eqid |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
15 |
|
subrgrcl |
|- ( T e. ( SubRing ` R ) -> R e. Ring ) |
16 |
3 15
|
syl |
|- ( ph -> R e. Ring ) |
17 |
1 14 8 5 2 16
|
mvrfval |
|- ( ph -> V = ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) |
18 |
|
eqid |
|- ( I mVar H ) = ( I mVar H ) |
19 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
20 |
|
eqid |
|- ( 1r ` H ) = ( 1r ` H ) |
21 |
4
|
ovexi |
|- H e. _V |
22 |
21
|
a1i |
|- ( ph -> H e. _V ) |
23 |
18 14 19 20 2 22
|
mvrfval |
|- ( ph -> ( I mVar H ) = ( x e. I |-> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` H ) , ( 0g ` H ) ) ) ) ) |
24 |
13 17 23
|
3eqtr4d |
|- ( ph -> V = ( I mVar H ) ) |