Metamath Proof Explorer


Theorem subrgmvr

Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrgmvr.v V=ImVarR
subrgmvr.i φIW
subrgmvr.r φTSubRingR
subrgmvr.h H=R𝑠T
Assertion subrgmvr φV=ImVarH

Proof

Step Hyp Ref Expression
1 subrgmvr.v V=ImVarR
2 subrgmvr.i φIW
3 subrgmvr.r φTSubRingR
4 subrgmvr.h H=R𝑠T
5 eqid 1R=1R
6 4 5 subrg1 TSubRingR1R=1H
7 3 6 syl φ1R=1H
8 eqid 0R=0R
9 4 8 subrg0 TSubRingR0R=0H
10 3 9 syl φ0R=0H
11 7 10 ifeq12d φify=zIifz=x101R0R=ify=zIifz=x101H0H
12 11 mpteq2dv φyf0I|f-1Finify=zIifz=x101R0R=yf0I|f-1Finify=zIifz=x101H0H
13 12 mpteq2dv φxIyf0I|f-1Finify=zIifz=x101R0R=xIyf0I|f-1Finify=zIifz=x101H0H
14 eqid f0I|f-1Fin=f0I|f-1Fin
15 subrgrcl TSubRingRRRing
16 3 15 syl φRRing
17 1 14 8 5 2 16 mvrfval φV=xIyf0I|f-1Finify=zIifz=x101R0R
18 eqid ImVarH=ImVarH
19 eqid 0H=0H
20 eqid 1H=1H
21 4 ovexi HV
22 21 a1i φHV
23 18 14 19 20 2 22 mvrfval φImVarH=xIyf0I|f-1Finify=zIifz=x101H0H
24 13 17 23 3eqtr4d φV=ImVarH