Step |
Hyp |
Ref |
Expression |
1 |
|
subrgmvr.v |
|- V = ( I mVar R ) |
2 |
|
subrgmvr.i |
|- ( ph -> I e. W ) |
3 |
|
subrgmvr.r |
|- ( ph -> T e. ( SubRing ` R ) ) |
4 |
|
subrgmvr.h |
|- H = ( R |`s T ) |
5 |
|
subrgmvrf.u |
|- U = ( I mPoly H ) |
6 |
|
subrgmvrf.b |
|- B = ( Base ` U ) |
7 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
8 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
9 |
|
subrgrcl |
|- ( T e. ( SubRing ` R ) -> R e. Ring ) |
10 |
3 9
|
syl |
|- ( ph -> R e. Ring ) |
11 |
7 1 8 2 10
|
mvrf |
|- ( ph -> V : I --> ( Base ` ( I mPwSer R ) ) ) |
12 |
11
|
ffnd |
|- ( ph -> V Fn I ) |
13 |
1 2 3 4
|
subrgmvr |
|- ( ph -> V = ( I mVar H ) ) |
14 |
13
|
fveq1d |
|- ( ph -> ( V ` x ) = ( ( I mVar H ) ` x ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ x e. I ) -> ( V ` x ) = ( ( I mVar H ) ` x ) ) |
16 |
|
eqid |
|- ( I mVar H ) = ( I mVar H ) |
17 |
2
|
adantr |
|- ( ( ph /\ x e. I ) -> I e. W ) |
18 |
4
|
subrgring |
|- ( T e. ( SubRing ` R ) -> H e. Ring ) |
19 |
3 18
|
syl |
|- ( ph -> H e. Ring ) |
20 |
19
|
adantr |
|- ( ( ph /\ x e. I ) -> H e. Ring ) |
21 |
|
simpr |
|- ( ( ph /\ x e. I ) -> x e. I ) |
22 |
5 16 6 17 20 21
|
mvrcl |
|- ( ( ph /\ x e. I ) -> ( ( I mVar H ) ` x ) e. B ) |
23 |
15 22
|
eqeltrd |
|- ( ( ph /\ x e. I ) -> ( V ` x ) e. B ) |
24 |
23
|
ralrimiva |
|- ( ph -> A. x e. I ( V ` x ) e. B ) |
25 |
|
ffnfv |
|- ( V : I --> B <-> ( V Fn I /\ A. x e. I ( V ` x ) e. B ) ) |
26 |
12 24 25
|
sylanbrc |
|- ( ph -> V : I --> B ) |