| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgmvr.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
| 2 |
|
subrgmvr.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 3 |
|
subrgmvr.r |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
| 4 |
|
subrgmvr.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
| 5 |
|
subrgmvrf.u |
⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) |
| 6 |
|
subrgmvrf.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
| 7 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 9 |
|
subrgrcl |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 11 |
7 1 8 2 10
|
mvrf |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 12 |
11
|
ffnd |
⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
| 13 |
1 2 3 4
|
subrgmvr |
⊢ ( 𝜑 → 𝑉 = ( 𝐼 mVar 𝐻 ) ) |
| 14 |
13
|
fveq1d |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑥 ) = ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) = ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) ) |
| 16 |
|
eqid |
⊢ ( 𝐼 mVar 𝐻 ) = ( 𝐼 mVar 𝐻 ) |
| 17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 18 |
4
|
subrgring |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring ) |
| 19 |
3 18
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐻 ∈ Ring ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
| 22 |
5 16 6 17 20 21
|
mvrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 23 |
15 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) |
| 24 |
23
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) |
| 25 |
|
ffnfv |
⊢ ( 𝑉 : 𝐼 ⟶ 𝐵 ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 26 |
12 24 25
|
sylanbrc |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |