Step |
Hyp |
Ref |
Expression |
1 |
|
subrgmvr.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
2 |
|
subrgmvr.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
3 |
|
subrgmvr.r |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
4 |
|
subrgmvr.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
5 |
|
subrgmvrf.u |
⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) |
6 |
|
subrgmvrf.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) |
8 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
9 |
|
subrgrcl |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
11 |
7 1 8 2 10
|
mvrf |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
12 |
11
|
ffnd |
⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
13 |
1 2 3 4
|
subrgmvr |
⊢ ( 𝜑 → 𝑉 = ( 𝐼 mVar 𝐻 ) ) |
14 |
13
|
fveq1d |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑥 ) = ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) = ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) ) |
16 |
|
eqid |
⊢ ( 𝐼 mVar 𝐻 ) = ( 𝐼 mVar 𝐻 ) |
17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
18 |
4
|
subrgring |
⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring ) |
19 |
3 18
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐻 ∈ Ring ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
22 |
5 16 6 17 20 21
|
mvrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) ∈ 𝐵 ) |
23 |
15 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) |
24 |
23
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) |
25 |
|
ffnfv |
⊢ ( 𝑉 : 𝐼 ⟶ 𝐵 ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) ) |
26 |
12 24 25
|
sylanbrc |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |