Metamath Proof Explorer


Theorem subrgmvrf

Description: The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrgmvr.v 𝑉 = ( 𝐼 mVar 𝑅 )
subrgmvr.i ( 𝜑𝐼𝑊 )
subrgmvr.r ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
subrgmvr.h 𝐻 = ( 𝑅s 𝑇 )
subrgmvrf.u 𝑈 = ( 𝐼 mPoly 𝐻 )
subrgmvrf.b 𝐵 = ( Base ‘ 𝑈 )
Assertion subrgmvrf ( 𝜑𝑉 : 𝐼𝐵 )

Proof

Step Hyp Ref Expression
1 subrgmvr.v 𝑉 = ( 𝐼 mVar 𝑅 )
2 subrgmvr.i ( 𝜑𝐼𝑊 )
3 subrgmvr.r ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
4 subrgmvr.h 𝐻 = ( 𝑅s 𝑇 )
5 subrgmvrf.u 𝑈 = ( 𝐼 mPoly 𝐻 )
6 subrgmvrf.b 𝐵 = ( Base ‘ 𝑈 )
7 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
8 eqid ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) )
9 subrgrcl ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring )
10 3 9 syl ( 𝜑𝑅 ∈ Ring )
11 7 1 8 2 10 mvrf ( 𝜑𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) )
12 11 ffnd ( 𝜑𝑉 Fn 𝐼 )
13 1 2 3 4 subrgmvr ( 𝜑𝑉 = ( 𝐼 mVar 𝐻 ) )
14 13 fveq1d ( 𝜑 → ( 𝑉𝑥 ) = ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) )
15 14 adantr ( ( 𝜑𝑥𝐼 ) → ( 𝑉𝑥 ) = ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) )
16 eqid ( 𝐼 mVar 𝐻 ) = ( 𝐼 mVar 𝐻 )
17 2 adantr ( ( 𝜑𝑥𝐼 ) → 𝐼𝑊 )
18 4 subrgring ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring )
19 3 18 syl ( 𝜑𝐻 ∈ Ring )
20 19 adantr ( ( 𝜑𝑥𝐼 ) → 𝐻 ∈ Ring )
21 simpr ( ( 𝜑𝑥𝐼 ) → 𝑥𝐼 )
22 5 16 6 17 20 21 mvrcl ( ( 𝜑𝑥𝐼 ) → ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) ∈ 𝐵 )
23 15 22 eqeltrd ( ( 𝜑𝑥𝐼 ) → ( 𝑉𝑥 ) ∈ 𝐵 )
24 23 ralrimiva ( 𝜑 → ∀ 𝑥𝐼 ( 𝑉𝑥 ) ∈ 𝐵 )
25 ffnfv ( 𝑉 : 𝐼𝐵 ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥𝐼 ( 𝑉𝑥 ) ∈ 𝐵 ) )
26 12 24 25 sylanbrc ( 𝜑𝑉 : 𝐼𝐵 )