| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-5 |  |-  5 = ( 4 + 1 ) | 
						
							| 2 | 1 | oveq1i |  |-  ( 5 _C 3 ) = ( ( 4 + 1 ) _C 3 ) | 
						
							| 3 |  | 4bc3eq4 |  |-  ( 4 _C 3 ) = 4 | 
						
							| 4 |  | 3m1e2 |  |-  ( 3 - 1 ) = 2 | 
						
							| 5 | 4 | oveq2i |  |-  ( 4 _C ( 3 - 1 ) ) = ( 4 _C 2 ) | 
						
							| 6 |  | 4bc2eq6 |  |-  ( 4 _C 2 ) = 6 | 
						
							| 7 | 5 6 | eqtri |  |-  ( 4 _C ( 3 - 1 ) ) = 6 | 
						
							| 8 | 3 7 | oveq12i |  |-  ( ( 4 _C 3 ) + ( 4 _C ( 3 - 1 ) ) ) = ( 4 + 6 ) | 
						
							| 9 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 10 |  | 3z |  |-  3 e. ZZ | 
						
							| 11 |  | bcpasc |  |-  ( ( 4 e. NN0 /\ 3 e. ZZ ) -> ( ( 4 _C 3 ) + ( 4 _C ( 3 - 1 ) ) ) = ( ( 4 + 1 ) _C 3 ) ) | 
						
							| 12 | 9 10 11 | mp2an |  |-  ( ( 4 _C 3 ) + ( 4 _C ( 3 - 1 ) ) ) = ( ( 4 + 1 ) _C 3 ) | 
						
							| 13 |  | 6cn |  |-  6 e. CC | 
						
							| 14 |  | 4cn |  |-  4 e. CC | 
						
							| 15 |  | 6p4e10 |  |-  ( 6 + 4 ) = ; 1 0 | 
						
							| 16 | 13 14 15 | addcomli |  |-  ( 4 + 6 ) = ; 1 0 | 
						
							| 17 | 8 12 16 | 3eqtr3i |  |-  ( ( 4 + 1 ) _C 3 ) = ; 1 0 | 
						
							| 18 | 2 17 | eqtri |  |-  ( 5 _C 3 ) = ; 1 0 |