| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-5 | ⊢ 5  =  ( 4  +  1 ) | 
						
							| 2 | 1 | oveq1i | ⊢ ( 5 C 3 )  =  ( ( 4  +  1 ) C 3 ) | 
						
							| 3 |  | 4bc3eq4 | ⊢ ( 4 C 3 )  =  4 | 
						
							| 4 |  | 3m1e2 | ⊢ ( 3  −  1 )  =  2 | 
						
							| 5 | 4 | oveq2i | ⊢ ( 4 C ( 3  −  1 ) )  =  ( 4 C 2 ) | 
						
							| 6 |  | 4bc2eq6 | ⊢ ( 4 C 2 )  =  6 | 
						
							| 7 | 5 6 | eqtri | ⊢ ( 4 C ( 3  −  1 ) )  =  6 | 
						
							| 8 | 3 7 | oveq12i | ⊢ ( ( 4 C 3 )  +  ( 4 C ( 3  −  1 ) ) )  =  ( 4  +  6 ) | 
						
							| 9 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 10 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 11 |  | bcpasc | ⊢ ( ( 4  ∈  ℕ0  ∧  3  ∈  ℤ )  →  ( ( 4 C 3 )  +  ( 4 C ( 3  −  1 ) ) )  =  ( ( 4  +  1 ) C 3 ) ) | 
						
							| 12 | 9 10 11 | mp2an | ⊢ ( ( 4 C 3 )  +  ( 4 C ( 3  −  1 ) ) )  =  ( ( 4  +  1 ) C 3 ) | 
						
							| 13 |  | 6cn | ⊢ 6  ∈  ℂ | 
						
							| 14 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 15 |  | 6p4e10 | ⊢ ( 6  +  4 )  =  ; 1 0 | 
						
							| 16 | 13 14 15 | addcomli | ⊢ ( 4  +  6 )  =  ; 1 0 | 
						
							| 17 | 8 12 16 | 3eqtr3i | ⊢ ( ( 4  +  1 ) C 3 )  =  ; 1 0 | 
						
							| 18 | 2 17 | eqtri | ⊢ ( 5 C 3 )  =  ; 1 0 |