Metamath Proof Explorer


Theorem f1mo

Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Assertion f1mo
|- ( ( E* x x e. A /\ F : A --> B ) -> F : A -1-1-> B )

Proof

Step Hyp Ref Expression
1 mo0sn
 |-  ( E* x x e. A <-> ( A = (/) \/ E. y A = { y } ) )
2 f102g
 |-  ( ( A = (/) /\ F : A --> B ) -> F : A -1-1-> B )
3 vex
 |-  y e. _V
4 f1sn2g
 |-  ( ( y e. _V /\ F : { y } --> B ) -> F : { y } -1-1-> B )
5 3 4 mpan
 |-  ( F : { y } --> B -> F : { y } -1-1-> B )
6 feq2
 |-  ( A = { y } -> ( F : A --> B <-> F : { y } --> B ) )
7 f1eq2
 |-  ( A = { y } -> ( F : A -1-1-> B <-> F : { y } -1-1-> B ) )
8 6 7 imbi12d
 |-  ( A = { y } -> ( ( F : A --> B -> F : A -1-1-> B ) <-> ( F : { y } --> B -> F : { y } -1-1-> B ) ) )
9 5 8 mpbiri
 |-  ( A = { y } -> ( F : A --> B -> F : A -1-1-> B ) )
10 9 exlimiv
 |-  ( E. y A = { y } -> ( F : A --> B -> F : A -1-1-> B ) )
11 10 imp
 |-  ( ( E. y A = { y } /\ F : A --> B ) -> F : A -1-1-> B )
12 2 11 jaoian
 |-  ( ( ( A = (/) \/ E. y A = { y } ) /\ F : A --> B ) -> F : A -1-1-> B )
13 1 12 sylanb
 |-  ( ( E* x x e. A /\ F : A --> B ) -> F : A -1-1-> B )