| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mo0sn |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ) |
| 2 |
|
f102g |
⊢ ( ( 𝐴 = ∅ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 3 |
|
vex |
⊢ 𝑦 ∈ V |
| 4 |
|
f1sn2g |
⊢ ( ( 𝑦 ∈ V ∧ 𝐹 : { 𝑦 } ⟶ 𝐵 ) → 𝐹 : { 𝑦 } –1-1→ 𝐵 ) |
| 5 |
3 4
|
mpan |
⊢ ( 𝐹 : { 𝑦 } ⟶ 𝐵 → 𝐹 : { 𝑦 } –1-1→ 𝐵 ) |
| 6 |
|
feq2 |
⊢ ( 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : { 𝑦 } ⟶ 𝐵 ) ) |
| 7 |
|
f1eq2 |
⊢ ( 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ 𝐹 : { 𝑦 } –1-1→ 𝐵 ) ) |
| 8 |
6 7
|
imbi12d |
⊢ ( 𝐴 = { 𝑦 } → ( ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) ↔ ( 𝐹 : { 𝑦 } ⟶ 𝐵 → 𝐹 : { 𝑦 } –1-1→ 𝐵 ) ) ) |
| 9 |
5 8
|
mpbiri |
⊢ ( 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) ) |
| 10 |
9
|
exlimiv |
⊢ ( ∃ 𝑦 𝐴 = { 𝑦 } → ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) ) |
| 11 |
10
|
imp |
⊢ ( ( ∃ 𝑦 𝐴 = { 𝑦 } ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 12 |
2 11
|
jaoian |
⊢ ( ( ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 13 |
1 12
|
sylanb |
⊢ ( ( ∃* 𝑥 𝑥 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |