Metamath Proof Explorer


Theorem f1oeq3dd

Description: Equality deduction for one-to-one onto functions. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses f1oeq3dd.1
|- ( ph -> F : C -1-1-onto-> A )
f1oeq3dd.2
|- ( ph -> A = B )
Assertion f1oeq3dd
|- ( ph -> F : C -1-1-onto-> B )

Proof

Step Hyp Ref Expression
1 f1oeq3dd.1
 |-  ( ph -> F : C -1-1-onto-> A )
2 f1oeq3dd.2
 |-  ( ph -> A = B )
3 2 f1oeq3d
 |-  ( ph -> ( F : C -1-1-onto-> A <-> F : C -1-1-onto-> B ) )
4 1 3 mpbid
 |-  ( ph -> F : C -1-1-onto-> B )