Metamath Proof Explorer


Theorem f1oeq3dd

Description: Equality deduction for one-to-one onto functions. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses f1oeq3dd.1 ( 𝜑𝐹 : 𝐶1-1-onto𝐴 )
f1oeq3dd.2 ( 𝜑𝐴 = 𝐵 )
Assertion f1oeq3dd ( 𝜑𝐹 : 𝐶1-1-onto𝐵 )

Proof

Step Hyp Ref Expression
1 f1oeq3dd.1 ( 𝜑𝐹 : 𝐶1-1-onto𝐴 )
2 f1oeq3dd.2 ( 𝜑𝐴 = 𝐵 )
3 2 f1oeq3d ( 𝜑 → ( 𝐹 : 𝐶1-1-onto𝐴𝐹 : 𝐶1-1-onto𝐵 ) )
4 1 3 mpbid ( 𝜑𝐹 : 𝐶1-1-onto𝐵 )