| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rinvbij.1 | ⊢ Fun  𝐹 | 
						
							| 2 |  | rinvbij.2 | ⊢ ◡ 𝐹  =  𝐹 | 
						
							| 3 |  | rinvbij.3a | ⊢ ( 𝐹  “  𝐴 )  ⊆  𝐵 | 
						
							| 4 |  | rinvbij.3b | ⊢ ( 𝐹  “  𝐵 )  ⊆  𝐴 | 
						
							| 5 |  | rinvbij.4a | ⊢ 𝐴  ⊆  dom  𝐹 | 
						
							| 6 |  | rinvbij.4b | ⊢ 𝐵  ⊆  dom  𝐹 | 
						
							| 7 |  | fdmrn | ⊢ ( Fun  𝐹  ↔  𝐹 : dom  𝐹 ⟶ ran  𝐹 ) | 
						
							| 8 | 1 7 | mpbi | ⊢ 𝐹 : dom  𝐹 ⟶ ran  𝐹 | 
						
							| 9 | 2 | funeqi | ⊢ ( Fun  ◡ 𝐹  ↔  Fun  𝐹 ) | 
						
							| 10 | 1 9 | mpbir | ⊢ Fun  ◡ 𝐹 | 
						
							| 11 |  | df-f1 | ⊢ ( 𝐹 : dom  𝐹 –1-1→ ran  𝐹  ↔  ( 𝐹 : dom  𝐹 ⟶ ran  𝐹  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 12 | 8 10 11 | mpbir2an | ⊢ 𝐹 : dom  𝐹 –1-1→ ran  𝐹 | 
						
							| 13 |  | f1ores | ⊢ ( ( 𝐹 : dom  𝐹 –1-1→ ran  𝐹  ∧  𝐴  ⊆  dom  𝐹 )  →  ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹  “  𝐴 ) ) | 
						
							| 14 | 12 5 13 | mp2an | ⊢ ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹  “  𝐴 ) | 
						
							| 15 |  | funimass3 | ⊢ ( ( Fun  𝐹  ∧  𝐵  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  𝐵 )  ⊆  𝐴  ↔  𝐵  ⊆  ( ◡ 𝐹  “  𝐴 ) ) ) | 
						
							| 16 | 1 6 15 | mp2an | ⊢ ( ( 𝐹  “  𝐵 )  ⊆  𝐴  ↔  𝐵  ⊆  ( ◡ 𝐹  “  𝐴 ) ) | 
						
							| 17 | 4 16 | mpbi | ⊢ 𝐵  ⊆  ( ◡ 𝐹  “  𝐴 ) | 
						
							| 18 | 2 | imaeq1i | ⊢ ( ◡ 𝐹  “  𝐴 )  =  ( 𝐹  “  𝐴 ) | 
						
							| 19 | 17 18 | sseqtri | ⊢ 𝐵  ⊆  ( 𝐹  “  𝐴 ) | 
						
							| 20 | 3 19 | eqssi | ⊢ ( 𝐹  “  𝐴 )  =  𝐵 | 
						
							| 21 |  | f1oeq3 | ⊢ ( ( 𝐹  “  𝐴 )  =  𝐵  →  ( ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹  “  𝐴 )  ↔  ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐵 ) ) | 
						
							| 22 | 20 21 | ax-mp | ⊢ ( ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ ( 𝐹  “  𝐴 )  ↔  ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 23 | 14 22 | mpbi | ⊢ ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝐵 |