| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rinvbij.1 |
|- Fun F |
| 2 |
|
rinvbij.2 |
|- `' F = F |
| 3 |
|
rinvbij.3a |
|- ( F " A ) C_ B |
| 4 |
|
rinvbij.3b |
|- ( F " B ) C_ A |
| 5 |
|
rinvbij.4a |
|- A C_ dom F |
| 6 |
|
rinvbij.4b |
|- B C_ dom F |
| 7 |
|
fdmrn |
|- ( Fun F <-> F : dom F --> ran F ) |
| 8 |
1 7
|
mpbi |
|- F : dom F --> ran F |
| 9 |
2
|
funeqi |
|- ( Fun `' F <-> Fun F ) |
| 10 |
1 9
|
mpbir |
|- Fun `' F |
| 11 |
|
df-f1 |
|- ( F : dom F -1-1-> ran F <-> ( F : dom F --> ran F /\ Fun `' F ) ) |
| 12 |
8 10 11
|
mpbir2an |
|- F : dom F -1-1-> ran F |
| 13 |
|
f1ores |
|- ( ( F : dom F -1-1-> ran F /\ A C_ dom F ) -> ( F |` A ) : A -1-1-onto-> ( F " A ) ) |
| 14 |
12 5 13
|
mp2an |
|- ( F |` A ) : A -1-1-onto-> ( F " A ) |
| 15 |
|
funimass3 |
|- ( ( Fun F /\ B C_ dom F ) -> ( ( F " B ) C_ A <-> B C_ ( `' F " A ) ) ) |
| 16 |
1 6 15
|
mp2an |
|- ( ( F " B ) C_ A <-> B C_ ( `' F " A ) ) |
| 17 |
4 16
|
mpbi |
|- B C_ ( `' F " A ) |
| 18 |
2
|
imaeq1i |
|- ( `' F " A ) = ( F " A ) |
| 19 |
17 18
|
sseqtri |
|- B C_ ( F " A ) |
| 20 |
3 19
|
eqssi |
|- ( F " A ) = B |
| 21 |
|
f1oeq3 |
|- ( ( F " A ) = B -> ( ( F |` A ) : A -1-1-onto-> ( F " A ) <-> ( F |` A ) : A -1-1-onto-> B ) ) |
| 22 |
20 21
|
ax-mp |
|- ( ( F |` A ) : A -1-1-onto-> ( F " A ) <-> ( F |` A ) : A -1-1-onto-> B ) |
| 23 |
14 22
|
mpbi |
|- ( F |` A ) : A -1-1-onto-> B |