Metamath Proof Explorer


Theorem rinvf1o

Description: Sufficient conditions for the restriction of an involution to be a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses rinvbij.1 FunF
rinvbij.2 F-1=F
rinvbij.3a FAB
rinvbij.3b FBA
rinvbij.4a AdomF
rinvbij.4b BdomF
Assertion rinvf1o FA:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 rinvbij.1 FunF
2 rinvbij.2 F-1=F
3 rinvbij.3a FAB
4 rinvbij.3b FBA
5 rinvbij.4a AdomF
6 rinvbij.4b BdomF
7 fdmrn FunFF:domFranF
8 1 7 mpbi F:domFranF
9 2 funeqi FunF-1FunF
10 1 9 mpbir FunF-1
11 df-f1 F:domF1-1ranFF:domFranFFunF-1
12 8 10 11 mpbir2an F:domF1-1ranF
13 f1ores F:domF1-1ranFAdomFFA:A1-1 ontoFA
14 12 5 13 mp2an FA:A1-1 ontoFA
15 funimass3 FunFBdomFFBABF-1A
16 1 6 15 mp2an FBABF-1A
17 4 16 mpbi BF-1A
18 2 imaeq1i F-1A=FA
19 17 18 sseqtri BFA
20 3 19 eqssi FA=B
21 f1oeq3 FA=BFA:A1-1 ontoFAFA:A1-1 ontoB
22 20 21 ax-mp FA:A1-1 ontoFAFA:A1-1 ontoB
23 14 22 mpbi FA:A1-1 ontoB