Metamath Proof Explorer


Theorem fresf1o

Description: Conditions for a restriction to be a one-to-one onto function. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Assertion fresf1o Fun F C ran F Fun F -1 C F F -1 C : F -1 C 1-1 onto C

Proof

Step Hyp Ref Expression
1 funfn Fun F -1 C F -1 C Fn dom F -1 C
2 1 biimpi Fun F -1 C F -1 C Fn dom F -1 C
3 2 3ad2ant3 Fun F C ran F Fun F -1 C F -1 C Fn dom F -1 C
4 simp2 Fun F C ran F Fun F -1 C C ran F
5 df-rn ran F = dom F -1
6 4 5 sseqtrdi Fun F C ran F Fun F -1 C C dom F -1
7 ssdmres C dom F -1 dom F -1 C = C
8 6 7 sylib Fun F C ran F Fun F -1 C dom F -1 C = C
9 8 fneq2d Fun F C ran F Fun F -1 C F -1 C Fn dom F -1 C F -1 C Fn C
10 3 9 mpbid Fun F C ran F Fun F -1 C F -1 C Fn C
11 simp1 Fun F C ran F Fun F -1 C Fun F
12 funres Fun F Fun F F -1 C
13 11 12 syl Fun F C ran F Fun F -1 C Fun F F -1 C
14 funcnvres2 Fun F F -1 C -1 = F F -1 C
15 11 14 syl Fun F C ran F Fun F -1 C F -1 C -1 = F F -1 C
16 15 funeqd Fun F C ran F Fun F -1 C Fun F -1 C -1 Fun F F -1 C
17 13 16 mpbird Fun F C ran F Fun F -1 C Fun F -1 C -1
18 df-ima F -1 C = ran F -1 C
19 18 eqcomi ran F -1 C = F -1 C
20 19 a1i Fun F C ran F Fun F -1 C ran F -1 C = F -1 C
21 dff1o2 F -1 C : C 1-1 onto F -1 C F -1 C Fn C Fun F -1 C -1 ran F -1 C = F -1 C
22 10 17 20 21 syl3anbrc Fun F C ran F Fun F -1 C F -1 C : C 1-1 onto F -1 C
23 f1ocnv F -1 C : C 1-1 onto F -1 C F -1 C -1 : F -1 C 1-1 onto C
24 22 23 syl Fun F C ran F Fun F -1 C F -1 C -1 : F -1 C 1-1 onto C
25 f1oeq1 F -1 C -1 = F F -1 C F -1 C -1 : F -1 C 1-1 onto C F F -1 C : F -1 C 1-1 onto C
26 11 14 25 3syl Fun F C ran F Fun F -1 C F -1 C -1 : F -1 C 1-1 onto C F F -1 C : F -1 C 1-1 onto C
27 24 26 mpbid Fun F C ran F Fun F -1 C F F -1 C : F -1 C 1-1 onto C