| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ocnvfvb |
|- ( ( F : A -1-1-onto-> A /\ x e. A /\ x e. A ) -> ( ( F ` x ) = x <-> ( `' F ` x ) = x ) ) |
| 2 |
1
|
3anidm23 |
|- ( ( F : A -1-1-onto-> A /\ x e. A ) -> ( ( F ` x ) = x <-> ( `' F ` x ) = x ) ) |
| 3 |
2
|
bicomd |
|- ( ( F : A -1-1-onto-> A /\ x e. A ) -> ( ( `' F ` x ) = x <-> ( F ` x ) = x ) ) |
| 4 |
3
|
necon3bid |
|- ( ( F : A -1-1-onto-> A /\ x e. A ) -> ( ( `' F ` x ) =/= x <-> ( F ` x ) =/= x ) ) |
| 5 |
4
|
rabbidva |
|- ( F : A -1-1-onto-> A -> { x e. A | ( `' F ` x ) =/= x } = { x e. A | ( F ` x ) =/= x } ) |
| 6 |
|
f1ocnv |
|- ( F : A -1-1-onto-> A -> `' F : A -1-1-onto-> A ) |
| 7 |
|
f1ofn |
|- ( `' F : A -1-1-onto-> A -> `' F Fn A ) |
| 8 |
|
fndifnfp |
|- ( `' F Fn A -> dom ( `' F \ _I ) = { x e. A | ( `' F ` x ) =/= x } ) |
| 9 |
6 7 8
|
3syl |
|- ( F : A -1-1-onto-> A -> dom ( `' F \ _I ) = { x e. A | ( `' F ` x ) =/= x } ) |
| 10 |
|
f1ofn |
|- ( F : A -1-1-onto-> A -> F Fn A ) |
| 11 |
|
fndifnfp |
|- ( F Fn A -> dom ( F \ _I ) = { x e. A | ( F ` x ) =/= x } ) |
| 12 |
10 11
|
syl |
|- ( F : A -1-1-onto-> A -> dom ( F \ _I ) = { x e. A | ( F ` x ) =/= x } ) |
| 13 |
5 9 12
|
3eqtr4d |
|- ( F : A -1-1-onto-> A -> dom ( `' F \ _I ) = dom ( F \ _I ) ) |