Description: The codomain/range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ovv | |- ( F : A -1-1-onto-> B -> ( A e. _V <-> B e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofo | |- ( F : A -1-1-onto-> B -> F : A -onto-> B ) |
|
| 2 | focdmex | |- ( A e. _V -> ( F : A -onto-> B -> B e. _V ) ) |
|
| 3 | 1 2 | syl5com | |- ( F : A -1-1-onto-> B -> ( A e. _V -> B e. _V ) ) |
| 4 | f1of1 | |- ( F : A -1-1-onto-> B -> F : A -1-1-> B ) |
|
| 5 | f1dmex | |- ( ( F : A -1-1-> B /\ B e. _V ) -> A e. _V ) |
|
| 6 | 5 | ex | |- ( F : A -1-1-> B -> ( B e. _V -> A e. _V ) ) |
| 7 | 4 6 | syl | |- ( F : A -1-1-onto-> B -> ( B e. _V -> A e. _V ) ) |
| 8 | 3 7 | impbid | |- ( F : A -1-1-onto-> B -> ( A e. _V <-> B e. _V ) ) |