| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvres |
|- ( C e. A -> ( ( F |` A ) ` C ) = ( F ` C ) ) |
| 2 |
1
|
ad2antrl |
|- ( ( ( F |` A ) : A -1-1-> B /\ ( C e. A /\ D e. A ) ) -> ( ( F |` A ) ` C ) = ( F ` C ) ) |
| 3 |
|
fvres |
|- ( D e. A -> ( ( F |` A ) ` D ) = ( F ` D ) ) |
| 4 |
3
|
ad2antll |
|- ( ( ( F |` A ) : A -1-1-> B /\ ( C e. A /\ D e. A ) ) -> ( ( F |` A ) ` D ) = ( F ` D ) ) |
| 5 |
2 4
|
eqeq12d |
|- ( ( ( F |` A ) : A -1-1-> B /\ ( C e. A /\ D e. A ) ) -> ( ( ( F |` A ) ` C ) = ( ( F |` A ) ` D ) <-> ( F ` C ) = ( F ` D ) ) ) |
| 6 |
|
f1veqaeq |
|- ( ( ( F |` A ) : A -1-1-> B /\ ( C e. A /\ D e. A ) ) -> ( ( ( F |` A ) ` C ) = ( ( F |` A ) ` D ) -> C = D ) ) |
| 7 |
5 6
|
sylbird |
|- ( ( ( F |` A ) : A -1-1-> B /\ ( C e. A /\ D e. A ) ) -> ( ( F ` C ) = ( F ` D ) -> C = D ) ) |