| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1resrcmplf1dlem.1 |
|- ( ph -> C C_ A ) |
| 2 |
|
f1resrcmplf1dlem.2 |
|- ( ph -> D C_ A ) |
| 3 |
|
f1resrcmplf1dlem.3 |
|- ( ph -> F : A --> B ) |
| 4 |
|
f1resrcmplf1dlem.4 |
|- ( ph -> ( ( F " C ) i^i ( F " D ) ) = (/) ) |
| 5 |
3
|
ffnd |
|- ( ph -> F Fn A ) |
| 6 |
|
fnfvima |
|- ( ( F Fn A /\ C C_ A /\ X e. C ) -> ( F ` X ) e. ( F " C ) ) |
| 7 |
5 6
|
syl3an1 |
|- ( ( ph /\ C C_ A /\ X e. C ) -> ( F ` X ) e. ( F " C ) ) |
| 8 |
1 7
|
syl3an2 |
|- ( ( ph /\ ph /\ X e. C ) -> ( F ` X ) e. ( F " C ) ) |
| 9 |
8
|
3anidm12 |
|- ( ( ph /\ X e. C ) -> ( F ` X ) e. ( F " C ) ) |
| 10 |
9
|
ex |
|- ( ph -> ( X e. C -> ( F ` X ) e. ( F " C ) ) ) |
| 11 |
|
fnfvima |
|- ( ( F Fn A /\ D C_ A /\ Y e. D ) -> ( F ` Y ) e. ( F " D ) ) |
| 12 |
5 11
|
syl3an1 |
|- ( ( ph /\ D C_ A /\ Y e. D ) -> ( F ` Y ) e. ( F " D ) ) |
| 13 |
2 12
|
syl3an2 |
|- ( ( ph /\ ph /\ Y e. D ) -> ( F ` Y ) e. ( F " D ) ) |
| 14 |
13
|
3anidm12 |
|- ( ( ph /\ Y e. D ) -> ( F ` Y ) e. ( F " D ) ) |
| 15 |
14
|
ex |
|- ( ph -> ( Y e. D -> ( F ` Y ) e. ( F " D ) ) ) |
| 16 |
|
disjne |
|- ( ( ( ( F " C ) i^i ( F " D ) ) = (/) /\ ( F ` X ) e. ( F " C ) /\ ( F ` Y ) e. ( F " D ) ) -> ( F ` X ) =/= ( F ` Y ) ) |
| 17 |
4 16
|
syl3an1 |
|- ( ( ph /\ ( F ` X ) e. ( F " C ) /\ ( F ` Y ) e. ( F " D ) ) -> ( F ` X ) =/= ( F ` Y ) ) |
| 18 |
17
|
3expib |
|- ( ph -> ( ( ( F ` X ) e. ( F " C ) /\ ( F ` Y ) e. ( F " D ) ) -> ( F ` X ) =/= ( F ` Y ) ) ) |
| 19 |
|
neneq |
|- ( ( F ` X ) =/= ( F ` Y ) -> -. ( F ` X ) = ( F ` Y ) ) |
| 20 |
19
|
pm2.21d |
|- ( ( F ` X ) =/= ( F ` Y ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) |
| 21 |
18 20
|
syl6 |
|- ( ph -> ( ( ( F ` X ) e. ( F " C ) /\ ( F ` Y ) e. ( F " D ) ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |
| 22 |
10 15 21
|
syl2and |
|- ( ph -> ( ( X e. C /\ Y e. D ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |