| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1resrcmplf1d.1 |
|- ( ph -> C C_ A ) |
| 2 |
|
f1resrcmplf1d.2 |
|- ( ph -> F : A --> B ) |
| 3 |
|
f1resrcmplf1d.3 |
|- ( ph -> ( F |` C ) : C -1-1-> B ) |
| 4 |
|
f1resrcmplf1d.4 |
|- ( ph -> ( F |` ( A \ C ) ) : ( A \ C ) -1-1-> B ) |
| 5 |
|
f1resrcmplf1d.5 |
|- ( ph -> ( ( F " C ) i^i ( F " ( A \ C ) ) ) = (/) ) |
| 6 |
|
f1resveqaeq |
|- ( ( ( F |` C ) : C -1-1-> B /\ ( x e. C /\ y e. C ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 7 |
3 6
|
sylan |
|- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 8 |
7
|
ex |
|- ( ph -> ( ( x e. C /\ y e. C ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 9 |
|
difssd |
|- ( ph -> ( A \ C ) C_ A ) |
| 10 |
1 9 2 5
|
f1resrcmplf1dlem |
|- ( ph -> ( ( x e. C /\ y e. ( A \ C ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 11 |
|
incom |
|- ( ( F " C ) i^i ( F " ( A \ C ) ) ) = ( ( F " ( A \ C ) ) i^i ( F " C ) ) |
| 12 |
11 5
|
eqtr3id |
|- ( ph -> ( ( F " ( A \ C ) ) i^i ( F " C ) ) = (/) ) |
| 13 |
9 1 2 12
|
f1resrcmplf1dlem |
|- ( ph -> ( ( x e. ( A \ C ) /\ y e. C ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 14 |
|
f1resveqaeq |
|- ( ( ( F |` ( A \ C ) ) : ( A \ C ) -1-1-> B /\ ( x e. ( A \ C ) /\ y e. ( A \ C ) ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 15 |
4 14
|
sylan |
|- ( ( ph /\ ( x e. ( A \ C ) /\ y e. ( A \ C ) ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 16 |
15
|
ex |
|- ( ph -> ( ( x e. ( A \ C ) /\ y e. ( A \ C ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 17 |
8 10 13 16
|
prsrcmpltd |
|- ( ph -> ( ( x e. A /\ y e. A ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 18 |
17
|
ralrimivv |
|- ( ph -> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 19 |
|
dff13 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 20 |
2 18 19
|
sylanbrc |
|- ( ph -> F : A -1-1-> B ) |