| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prsrcmpltd.1 |
|- ( ph -> ( ( C e. A /\ D e. A ) -> ps ) ) |
| 2 |
|
prsrcmpltd.2 |
|- ( ph -> ( ( C e. A /\ D e. ( B \ A ) ) -> ps ) ) |
| 3 |
|
prsrcmpltd.3 |
|- ( ph -> ( ( C e. ( B \ A ) /\ D e. A ) -> ps ) ) |
| 4 |
|
prsrcmpltd.4 |
|- ( ph -> ( ( C e. ( B \ A ) /\ D e. ( B \ A ) ) -> ps ) ) |
| 5 |
1
|
expdimp |
|- ( ( ph /\ C e. A ) -> ( D e. A -> ps ) ) |
| 6 |
2
|
expdimp |
|- ( ( ph /\ C e. A ) -> ( D e. ( B \ A ) -> ps ) ) |
| 7 |
5 6
|
srcmpltd |
|- ( ( ph /\ C e. A ) -> ( D e. B -> ps ) ) |
| 8 |
7
|
impancom |
|- ( ( ph /\ D e. B ) -> ( C e. A -> ps ) ) |
| 9 |
3
|
expdimp |
|- ( ( ph /\ C e. ( B \ A ) ) -> ( D e. A -> ps ) ) |
| 10 |
4
|
expdimp |
|- ( ( ph /\ C e. ( B \ A ) ) -> ( D e. ( B \ A ) -> ps ) ) |
| 11 |
9 10
|
srcmpltd |
|- ( ( ph /\ C e. ( B \ A ) ) -> ( D e. B -> ps ) ) |
| 12 |
11
|
impancom |
|- ( ( ph /\ D e. B ) -> ( C e. ( B \ A ) -> ps ) ) |
| 13 |
8 12
|
srcmpltd |
|- ( ( ph /\ D e. B ) -> ( C e. B -> ps ) ) |
| 14 |
13
|
ex |
|- ( ph -> ( D e. B -> ( C e. B -> ps ) ) ) |
| 15 |
14
|
impcomd |
|- ( ph -> ( ( C e. B /\ D e. B ) -> ps ) ) |