Metamath Proof Explorer


Theorem prsrcmpltd

Description: If a statement is true for all pairs of elements of a class, all pairs of elements of its complement relative to a second class, and all pairs with one element in each, then it is true for all pairs of elements of the second class. (Contributed by BTernaryTau, 27-Sep-2023)

Ref Expression
Hypotheses prsrcmpltd.1
|- ( ph -> ( ( C e. A /\ D e. A ) -> ps ) )
prsrcmpltd.2
|- ( ph -> ( ( C e. A /\ D e. ( B \ A ) ) -> ps ) )
prsrcmpltd.3
|- ( ph -> ( ( C e. ( B \ A ) /\ D e. A ) -> ps ) )
prsrcmpltd.4
|- ( ph -> ( ( C e. ( B \ A ) /\ D e. ( B \ A ) ) -> ps ) )
Assertion prsrcmpltd
|- ( ph -> ( ( C e. B /\ D e. B ) -> ps ) )

Proof

Step Hyp Ref Expression
1 prsrcmpltd.1
 |-  ( ph -> ( ( C e. A /\ D e. A ) -> ps ) )
2 prsrcmpltd.2
 |-  ( ph -> ( ( C e. A /\ D e. ( B \ A ) ) -> ps ) )
3 prsrcmpltd.3
 |-  ( ph -> ( ( C e. ( B \ A ) /\ D e. A ) -> ps ) )
4 prsrcmpltd.4
 |-  ( ph -> ( ( C e. ( B \ A ) /\ D e. ( B \ A ) ) -> ps ) )
5 1 expdimp
 |-  ( ( ph /\ C e. A ) -> ( D e. A -> ps ) )
6 2 expdimp
 |-  ( ( ph /\ C e. A ) -> ( D e. ( B \ A ) -> ps ) )
7 5 6 srcmpltd
 |-  ( ( ph /\ C e. A ) -> ( D e. B -> ps ) )
8 7 impancom
 |-  ( ( ph /\ D e. B ) -> ( C e. A -> ps ) )
9 3 expdimp
 |-  ( ( ph /\ C e. ( B \ A ) ) -> ( D e. A -> ps ) )
10 4 expdimp
 |-  ( ( ph /\ C e. ( B \ A ) ) -> ( D e. ( B \ A ) -> ps ) )
11 9 10 srcmpltd
 |-  ( ( ph /\ C e. ( B \ A ) ) -> ( D e. B -> ps ) )
12 11 impancom
 |-  ( ( ph /\ D e. B ) -> ( C e. ( B \ A ) -> ps ) )
13 8 12 srcmpltd
 |-  ( ( ph /\ D e. B ) -> ( C e. B -> ps ) )
14 13 ex
 |-  ( ph -> ( D e. B -> ( C e. B -> ps ) ) )
15 14 impcomd
 |-  ( ph -> ( ( C e. B /\ D e. B ) -> ps ) )