Step |
Hyp |
Ref |
Expression |
1 |
|
prsrcmpltd.1 |
|- ( ph -> ( ( C e. A /\ D e. A ) -> ps ) ) |
2 |
|
prsrcmpltd.2 |
|- ( ph -> ( ( C e. A /\ D e. ( B \ A ) ) -> ps ) ) |
3 |
|
prsrcmpltd.3 |
|- ( ph -> ( ( C e. ( B \ A ) /\ D e. A ) -> ps ) ) |
4 |
|
prsrcmpltd.4 |
|- ( ph -> ( ( C e. ( B \ A ) /\ D e. ( B \ A ) ) -> ps ) ) |
5 |
1
|
expdimp |
|- ( ( ph /\ C e. A ) -> ( D e. A -> ps ) ) |
6 |
2
|
expdimp |
|- ( ( ph /\ C e. A ) -> ( D e. ( B \ A ) -> ps ) ) |
7 |
5 6
|
srcmpltd |
|- ( ( ph /\ C e. A ) -> ( D e. B -> ps ) ) |
8 |
7
|
impancom |
|- ( ( ph /\ D e. B ) -> ( C e. A -> ps ) ) |
9 |
3
|
expdimp |
|- ( ( ph /\ C e. ( B \ A ) ) -> ( D e. A -> ps ) ) |
10 |
4
|
expdimp |
|- ( ( ph /\ C e. ( B \ A ) ) -> ( D e. ( B \ A ) -> ps ) ) |
11 |
9 10
|
srcmpltd |
|- ( ( ph /\ C e. ( B \ A ) ) -> ( D e. B -> ps ) ) |
12 |
11
|
impancom |
|- ( ( ph /\ D e. B ) -> ( C e. ( B \ A ) -> ps ) ) |
13 |
8 12
|
srcmpltd |
|- ( ( ph /\ D e. B ) -> ( C e. B -> ps ) ) |
14 |
13
|
ex |
|- ( ph -> ( D e. B -> ( C e. B -> ps ) ) ) |
15 |
14
|
impcomd |
|- ( ph -> ( ( C e. B /\ D e. B ) -> ps ) ) |