Metamath Proof Explorer


Theorem prsrcmpltd

Description: If a statement is true for all pairs of elements of a class, all pairs of elements of its complement relative to a second class, and all pairs with one element in each, then it is true for all pairs of elements of the second class. (Contributed by BTernaryTau, 27-Sep-2023)

Ref Expression
Hypotheses prsrcmpltd.1 ( 𝜑 → ( ( 𝐶𝐴𝐷𝐴 ) → 𝜓 ) )
prsrcmpltd.2 ( 𝜑 → ( ( 𝐶𝐴𝐷 ∈ ( 𝐵𝐴 ) ) → 𝜓 ) )
prsrcmpltd.3 ( 𝜑 → ( ( 𝐶 ∈ ( 𝐵𝐴 ) ∧ 𝐷𝐴 ) → 𝜓 ) )
prsrcmpltd.4 ( 𝜑 → ( ( 𝐶 ∈ ( 𝐵𝐴 ) ∧ 𝐷 ∈ ( 𝐵𝐴 ) ) → 𝜓 ) )
Assertion prsrcmpltd ( 𝜑 → ( ( 𝐶𝐵𝐷𝐵 ) → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 prsrcmpltd.1 ( 𝜑 → ( ( 𝐶𝐴𝐷𝐴 ) → 𝜓 ) )
2 prsrcmpltd.2 ( 𝜑 → ( ( 𝐶𝐴𝐷 ∈ ( 𝐵𝐴 ) ) → 𝜓 ) )
3 prsrcmpltd.3 ( 𝜑 → ( ( 𝐶 ∈ ( 𝐵𝐴 ) ∧ 𝐷𝐴 ) → 𝜓 ) )
4 prsrcmpltd.4 ( 𝜑 → ( ( 𝐶 ∈ ( 𝐵𝐴 ) ∧ 𝐷 ∈ ( 𝐵𝐴 ) ) → 𝜓 ) )
5 1 expdimp ( ( 𝜑𝐶𝐴 ) → ( 𝐷𝐴𝜓 ) )
6 2 expdimp ( ( 𝜑𝐶𝐴 ) → ( 𝐷 ∈ ( 𝐵𝐴 ) → 𝜓 ) )
7 5 6 srcmpltd ( ( 𝜑𝐶𝐴 ) → ( 𝐷𝐵𝜓 ) )
8 7 impancom ( ( 𝜑𝐷𝐵 ) → ( 𝐶𝐴𝜓 ) )
9 3 expdimp ( ( 𝜑𝐶 ∈ ( 𝐵𝐴 ) ) → ( 𝐷𝐴𝜓 ) )
10 4 expdimp ( ( 𝜑𝐶 ∈ ( 𝐵𝐴 ) ) → ( 𝐷 ∈ ( 𝐵𝐴 ) → 𝜓 ) )
11 9 10 srcmpltd ( ( 𝜑𝐶 ∈ ( 𝐵𝐴 ) ) → ( 𝐷𝐵𝜓 ) )
12 11 impancom ( ( 𝜑𝐷𝐵 ) → ( 𝐶 ∈ ( 𝐵𝐴 ) → 𝜓 ) )
13 8 12 srcmpltd ( ( 𝜑𝐷𝐵 ) → ( 𝐶𝐵𝜓 ) )
14 13 ex ( 𝜑 → ( 𝐷𝐵 → ( 𝐶𝐵𝜓 ) ) )
15 14 impcomd ( 𝜑 → ( ( 𝐶𝐵𝐷𝐵 ) → 𝜓 ) )