Step |
Hyp |
Ref |
Expression |
1 |
|
prsrcmpltd.1 |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → 𝜓 ) ) |
2 |
|
prsrcmpltd.2 |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝜓 ) ) |
3 |
|
prsrcmpltd.3 |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝐷 ∈ 𝐴 ) → 𝜓 ) ) |
4 |
|
prsrcmpltd.4 |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ( 𝐵 ∖ 𝐴 ) ∧ 𝐷 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝜓 ) ) |
5 |
1
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐷 ∈ 𝐴 → 𝜓 ) ) |
6 |
2
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐷 ∈ ( 𝐵 ∖ 𝐴 ) → 𝜓 ) ) |
7 |
5 6
|
srcmpltd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐷 ∈ 𝐵 → 𝜓 ) ) |
8 |
7
|
impancom |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 ∈ 𝐴 → 𝜓 ) ) |
9 |
3
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( 𝐷 ∈ 𝐴 → 𝜓 ) ) |
10 |
4
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( 𝐷 ∈ ( 𝐵 ∖ 𝐴 ) → 𝜓 ) ) |
11 |
9 10
|
srcmpltd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( 𝐷 ∈ 𝐵 → 𝜓 ) ) |
12 |
11
|
impancom |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 ∈ ( 𝐵 ∖ 𝐴 ) → 𝜓 ) ) |
13 |
8 12
|
srcmpltd |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 ∈ 𝐵 → 𝜓 ) ) |
14 |
13
|
ex |
⊢ ( 𝜑 → ( 𝐷 ∈ 𝐵 → ( 𝐶 ∈ 𝐵 → 𝜓 ) ) ) |
15 |
14
|
impcomd |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → 𝜓 ) ) |