Metamath Proof Explorer


Theorem srcmpltd

Description: If a statement is true for every element of a class and for every element of its complement relative to a second class, then it is true for every element in the second class. (Contributed by BTernaryTau, 27-Sep-2023)

Ref Expression
Hypotheses srcmpltd.1
|- ( ph -> ( C e. A -> ps ) )
srcmpltd.2
|- ( ph -> ( C e. ( B \ A ) -> ps ) )
Assertion srcmpltd
|- ( ph -> ( C e. B -> ps ) )

Proof

Step Hyp Ref Expression
1 srcmpltd.1
 |-  ( ph -> ( C e. A -> ps ) )
2 srcmpltd.2
 |-  ( ph -> ( C e. ( B \ A ) -> ps ) )
3 elun2
 |-  ( C e. B -> C e. ( A u. B ) )
4 undif2
 |-  ( A u. ( B \ A ) ) = ( A u. B )
5 3 4 eleqtrrdi
 |-  ( C e. B -> C e. ( A u. ( B \ A ) ) )
6 elunant
 |-  ( ( C e. ( A u. ( B \ A ) ) -> ps ) <-> ( ( C e. A -> ps ) /\ ( C e. ( B \ A ) -> ps ) ) )
7 1 2 6 sylanbrc
 |-  ( ph -> ( C e. ( A u. ( B \ A ) ) -> ps ) )
8 5 7 syl5
 |-  ( ph -> ( C e. B -> ps ) )