Description: If a statement is true for every element of a class and for every element of its complement relative to a second class, then it is true for every element in the second class. (Contributed by BTernaryTau, 27-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srcmpltd.1 | |- ( ph -> ( C e. A -> ps ) ) |
|
srcmpltd.2 | |- ( ph -> ( C e. ( B \ A ) -> ps ) ) |
||
Assertion | srcmpltd | |- ( ph -> ( C e. B -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srcmpltd.1 | |- ( ph -> ( C e. A -> ps ) ) |
|
2 | srcmpltd.2 | |- ( ph -> ( C e. ( B \ A ) -> ps ) ) |
|
3 | elun2 | |- ( C e. B -> C e. ( A u. B ) ) |
|
4 | undif2 | |- ( A u. ( B \ A ) ) = ( A u. B ) |
|
5 | 3 4 | eleqtrrdi | |- ( C e. B -> C e. ( A u. ( B \ A ) ) ) |
6 | elunant | |- ( ( C e. ( A u. ( B \ A ) ) -> ps ) <-> ( ( C e. A -> ps ) /\ ( C e. ( B \ A ) -> ps ) ) ) |
|
7 | 1 2 6 | sylanbrc | |- ( ph -> ( C e. ( A u. ( B \ A ) ) -> ps ) ) |
8 | 5 7 | syl5 | |- ( ph -> ( C e. B -> ps ) ) |