Step |
Hyp |
Ref |
Expression |
1 |
|
en1 |
|- ( F ~~ 1o <-> E. p F = { p } ) |
2 |
|
funrel |
|- ( Fun { p } -> Rel { p } ) |
3 |
|
vsnid |
|- p e. { p } |
4 |
|
elrel |
|- ( ( Rel { p } /\ p e. { p } ) -> E. x E. y p = <. x , y >. ) |
5 |
2 3 4
|
sylancl |
|- ( Fun { p } -> E. x E. y p = <. x , y >. ) |
6 |
|
sneq |
|- ( p = <. x , y >. -> { p } = { <. x , y >. } ) |
7 |
6
|
2eximi |
|- ( E. x E. y p = <. x , y >. -> E. x E. y { p } = { <. x , y >. } ) |
8 |
5 7
|
syl |
|- ( Fun { p } -> E. x E. y { p } = { <. x , y >. } ) |
9 |
|
funcnvsn |
|- Fun `' { <. x , y >. } |
10 |
9
|
gen2 |
|- A. x A. y Fun `' { <. x , y >. } |
11 |
|
19.29r2 |
|- ( ( E. x E. y { p } = { <. x , y >. } /\ A. x A. y Fun `' { <. x , y >. } ) -> E. x E. y ( { p } = { <. x , y >. } /\ Fun `' { <. x , y >. } ) ) |
12 |
|
cnveq |
|- ( { p } = { <. x , y >. } -> `' { p } = `' { <. x , y >. } ) |
13 |
12
|
funeqd |
|- ( { p } = { <. x , y >. } -> ( Fun `' { p } <-> Fun `' { <. x , y >. } ) ) |
14 |
13
|
biimpar |
|- ( ( { p } = { <. x , y >. } /\ Fun `' { <. x , y >. } ) -> Fun `' { p } ) |
15 |
14
|
exlimivv |
|- ( E. x E. y ( { p } = { <. x , y >. } /\ Fun `' { <. x , y >. } ) -> Fun `' { p } ) |
16 |
11 15
|
syl |
|- ( ( E. x E. y { p } = { <. x , y >. } /\ A. x A. y Fun `' { <. x , y >. } ) -> Fun `' { p } ) |
17 |
8 10 16
|
sylancl |
|- ( Fun { p } -> Fun `' { p } ) |
18 |
17
|
ax-gen |
|- A. p ( Fun { p } -> Fun `' { p } ) |
19 |
|
19.29r |
|- ( ( E. p F = { p } /\ A. p ( Fun { p } -> Fun `' { p } ) ) -> E. p ( F = { p } /\ ( Fun { p } -> Fun `' { p } ) ) ) |
20 |
|
funeq |
|- ( F = { p } -> ( Fun F <-> Fun { p } ) ) |
21 |
|
cnveq |
|- ( F = { p } -> `' F = `' { p } ) |
22 |
21
|
funeqd |
|- ( F = { p } -> ( Fun `' F <-> Fun `' { p } ) ) |
23 |
20 22
|
imbi12d |
|- ( F = { p } -> ( ( Fun F -> Fun `' F ) <-> ( Fun { p } -> Fun `' { p } ) ) ) |
24 |
23
|
biimpar |
|- ( ( F = { p } /\ ( Fun { p } -> Fun `' { p } ) ) -> ( Fun F -> Fun `' F ) ) |
25 |
24
|
exlimiv |
|- ( E. p ( F = { p } /\ ( Fun { p } -> Fun `' { p } ) ) -> ( Fun F -> Fun `' F ) ) |
26 |
19 25
|
syl |
|- ( ( E. p F = { p } /\ A. p ( Fun { p } -> Fun `' { p } ) ) -> ( Fun F -> Fun `' F ) ) |
27 |
18 26
|
mpan2 |
|- ( E. p F = { p } -> ( Fun F -> Fun `' F ) ) |
28 |
1 27
|
sylbi |
|- ( F ~~ 1o -> ( Fun F -> Fun `' F ) ) |
29 |
28
|
impcom |
|- ( ( Fun F /\ F ~~ 1o ) -> Fun `' F ) |