Step |
Hyp |
Ref |
Expression |
1 |
|
fnrelpredd.1 |
|- ( ph -> F Fn A ) |
2 |
|
fnrelpredd.2 |
|- ( ph -> A. x e. A A. y e. A ( x R y <-> ( F ` x ) S ( F ` y ) ) ) |
3 |
|
fnrelpredd.3 |
|- ( ph -> C C_ A ) |
4 |
|
fnrelpredd.4 |
|- ( ph -> D e. A ) |
5 |
|
fvex |
|- ( F ` D ) e. _V |
6 |
5
|
dfpred3 |
|- Pred ( S , ( F " C ) , ( F ` D ) ) = { v e. ( F " C ) | v S ( F ` D ) } |
7 |
|
elrabi |
|- ( u e. { x e. C | ( F ` x ) S ( F ` D ) } -> u e. C ) |
8 |
7
|
anim1i |
|- ( ( u e. { x e. C | ( F ` x ) S ( F ` D ) } /\ ( F ` u ) = v ) -> ( u e. C /\ ( F ` u ) = v ) ) |
9 |
8
|
reximi2 |
|- ( E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v -> E. u e. C ( F ` u ) = v ) |
10 |
1 3
|
fvelimabd |
|- ( ph -> ( v e. ( F " C ) <-> E. u e. C ( F ` u ) = v ) ) |
11 |
9 10
|
syl5ibr |
|- ( ph -> ( E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v -> v e. ( F " C ) ) ) |
12 |
|
fveq2 |
|- ( x = u -> ( F ` x ) = ( F ` u ) ) |
13 |
12
|
breq1d |
|- ( x = u -> ( ( F ` x ) S ( F ` D ) <-> ( F ` u ) S ( F ` D ) ) ) |
14 |
13
|
elrab |
|- ( u e. { x e. C | ( F ` x ) S ( F ` D ) } <-> ( u e. C /\ ( F ` u ) S ( F ` D ) ) ) |
15 |
|
breq1 |
|- ( ( F ` u ) = v -> ( ( F ` u ) S ( F ` D ) <-> v S ( F ` D ) ) ) |
16 |
15
|
biimpac |
|- ( ( ( F ` u ) S ( F ` D ) /\ ( F ` u ) = v ) -> v S ( F ` D ) ) |
17 |
16
|
adantll |
|- ( ( ( u e. C /\ ( F ` u ) S ( F ` D ) ) /\ ( F ` u ) = v ) -> v S ( F ` D ) ) |
18 |
14 17
|
sylanb |
|- ( ( u e. { x e. C | ( F ` x ) S ( F ` D ) } /\ ( F ` u ) = v ) -> v S ( F ` D ) ) |
19 |
18
|
rexlimiva |
|- ( E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v -> v S ( F ` D ) ) |
20 |
11 19
|
jca2 |
|- ( ph -> ( E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v -> ( v e. ( F " C ) /\ v S ( F ` D ) ) ) ) |
21 |
10
|
biimpd |
|- ( ph -> ( v e. ( F " C ) -> E. u e. C ( F ` u ) = v ) ) |
22 |
21
|
adantrd |
|- ( ph -> ( ( v e. ( F " C ) /\ v S ( F ` D ) ) -> E. u e. C ( F ` u ) = v ) ) |
23 |
|
simpl |
|- ( ( u e. C /\ ( F ` u ) = v ) -> u e. C ) |
24 |
23
|
a1i |
|- ( v S ( F ` D ) -> ( ( u e. C /\ ( F ` u ) = v ) -> u e. C ) ) |
25 |
15
|
biimprcd |
|- ( v S ( F ` D ) -> ( ( F ` u ) = v -> ( F ` u ) S ( F ` D ) ) ) |
26 |
25
|
adantld |
|- ( v S ( F ` D ) -> ( ( u e. C /\ ( F ` u ) = v ) -> ( F ` u ) S ( F ` D ) ) ) |
27 |
|
simpr |
|- ( ( u e. C /\ ( F ` u ) = v ) -> ( F ` u ) = v ) |
28 |
27
|
a1i |
|- ( v S ( F ` D ) -> ( ( u e. C /\ ( F ` u ) = v ) -> ( F ` u ) = v ) ) |
29 |
24 26 28
|
3jcad |
|- ( v S ( F ` D ) -> ( ( u e. C /\ ( F ` u ) = v ) -> ( u e. C /\ ( F ` u ) S ( F ` D ) /\ ( F ` u ) = v ) ) ) |
30 |
14
|
biimpri |
|- ( ( u e. C /\ ( F ` u ) S ( F ` D ) ) -> u e. { x e. C | ( F ` x ) S ( F ` D ) } ) |
31 |
30
|
anim1i |
|- ( ( ( u e. C /\ ( F ` u ) S ( F ` D ) ) /\ ( F ` u ) = v ) -> ( u e. { x e. C | ( F ` x ) S ( F ` D ) } /\ ( F ` u ) = v ) ) |
32 |
31
|
3impa |
|- ( ( u e. C /\ ( F ` u ) S ( F ` D ) /\ ( F ` u ) = v ) -> ( u e. { x e. C | ( F ` x ) S ( F ` D ) } /\ ( F ` u ) = v ) ) |
33 |
29 32
|
syl6 |
|- ( v S ( F ` D ) -> ( ( u e. C /\ ( F ` u ) = v ) -> ( u e. { x e. C | ( F ` x ) S ( F ` D ) } /\ ( F ` u ) = v ) ) ) |
34 |
33
|
reximdv2 |
|- ( v S ( F ` D ) -> ( E. u e. C ( F ` u ) = v -> E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v ) ) |
35 |
34
|
adantl |
|- ( ( v e. ( F " C ) /\ v S ( F ` D ) ) -> ( E. u e. C ( F ` u ) = v -> E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v ) ) |
36 |
22 35
|
sylcom |
|- ( ph -> ( ( v e. ( F " C ) /\ v S ( F ` D ) ) -> E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v ) ) |
37 |
20 36
|
impbid |
|- ( ph -> ( E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v <-> ( v e. ( F " C ) /\ v S ( F ` D ) ) ) ) |
38 |
37
|
abbidv |
|- ( ph -> { v | E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v } = { v | ( v e. ( F " C ) /\ v S ( F ` D ) ) } ) |
39 |
|
df-rab |
|- { v e. ( F " C ) | v S ( F ` D ) } = { v | ( v e. ( F " C ) /\ v S ( F ` D ) ) } |
40 |
38 39
|
eqtr4di |
|- ( ph -> { v | E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v } = { v e. ( F " C ) | v S ( F ` D ) } ) |
41 |
6 40
|
eqtr4id |
|- ( ph -> Pred ( S , ( F " C ) , ( F ` D ) ) = { v | E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v } ) |
42 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
43 |
1 42
|
syl |
|- ( ph -> Fun F ) |
44 |
|
ssrab2 |
|- { x e. C | ( F ` x ) S ( F ` D ) } C_ C |
45 |
44 3
|
sstrid |
|- ( ph -> { x e. C | ( F ` x ) S ( F ` D ) } C_ A ) |
46 |
1
|
fndmd |
|- ( ph -> dom F = A ) |
47 |
45 46
|
sseqtrrd |
|- ( ph -> { x e. C | ( F ` x ) S ( F ` D ) } C_ dom F ) |
48 |
|
dfimafn |
|- ( ( Fun F /\ { x e. C | ( F ` x ) S ( F ` D ) } C_ dom F ) -> ( F " { x e. C | ( F ` x ) S ( F ` D ) } ) = { v | E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v } ) |
49 |
43 47 48
|
syl2anc |
|- ( ph -> ( F " { x e. C | ( F ` x ) S ( F ` D ) } ) = { v | E. u e. { x e. C | ( F ` x ) S ( F ` D ) } ( F ` u ) = v } ) |
50 |
41 49
|
eqtr4d |
|- ( ph -> Pred ( S , ( F " C ) , ( F ` D ) ) = ( F " { x e. C | ( F ` x ) S ( F ` D ) } ) ) |
51 |
|
dfpred3g |
|- ( D e. A -> Pred ( R , C , D ) = { x e. C | x R D } ) |
52 |
4 51
|
syl |
|- ( ph -> Pred ( R , C , D ) = { x e. C | x R D } ) |
53 |
3
|
sselda |
|- ( ( ph /\ x e. C ) -> x e. A ) |
54 |
2
|
r19.21bi |
|- ( ( ph /\ x e. A ) -> A. y e. A ( x R y <-> ( F ` x ) S ( F ` y ) ) ) |
55 |
|
breq2 |
|- ( y = D -> ( x R y <-> x R D ) ) |
56 |
|
fveq2 |
|- ( y = D -> ( F ` y ) = ( F ` D ) ) |
57 |
56
|
breq2d |
|- ( y = D -> ( ( F ` x ) S ( F ` y ) <-> ( F ` x ) S ( F ` D ) ) ) |
58 |
55 57
|
bibi12d |
|- ( y = D -> ( ( x R y <-> ( F ` x ) S ( F ` y ) ) <-> ( x R D <-> ( F ` x ) S ( F ` D ) ) ) ) |
59 |
58
|
rspcv |
|- ( D e. A -> ( A. y e. A ( x R y <-> ( F ` x ) S ( F ` y ) ) -> ( x R D <-> ( F ` x ) S ( F ` D ) ) ) ) |
60 |
4 59
|
syl |
|- ( ph -> ( A. y e. A ( x R y <-> ( F ` x ) S ( F ` y ) ) -> ( x R D <-> ( F ` x ) S ( F ` D ) ) ) ) |
61 |
60
|
adantr |
|- ( ( ph /\ x e. A ) -> ( A. y e. A ( x R y <-> ( F ` x ) S ( F ` y ) ) -> ( x R D <-> ( F ` x ) S ( F ` D ) ) ) ) |
62 |
54 61
|
mpd |
|- ( ( ph /\ x e. A ) -> ( x R D <-> ( F ` x ) S ( F ` D ) ) ) |
63 |
53 62
|
syldan |
|- ( ( ph /\ x e. C ) -> ( x R D <-> ( F ` x ) S ( F ` D ) ) ) |
64 |
63
|
rabbidva |
|- ( ph -> { x e. C | x R D } = { x e. C | ( F ` x ) S ( F ` D ) } ) |
65 |
52 64
|
eqtrd |
|- ( ph -> Pred ( R , C , D ) = { x e. C | ( F ` x ) S ( F ` D ) } ) |
66 |
65
|
imaeq2d |
|- ( ph -> ( F " Pred ( R , C , D ) ) = ( F " { x e. C | ( F ` x ) S ( F ` D ) } ) ) |
67 |
50 66
|
eqtr4d |
|- ( ph -> Pred ( S , ( F " C ) , ( F ` D ) ) = ( F " Pred ( R , C , D ) ) ) |