Metamath Proof Explorer


Theorem fnrelpredd

Description: A function that preserves a relation also preserves predecessors. (Contributed by BTernaryTau, 16-Jul-2024)

Ref Expression
Hypotheses fnrelpredd.1 φ F Fn A
fnrelpredd.2 φ x A y A x R y F x S F y
fnrelpredd.3 φ C A
fnrelpredd.4 φ D A
Assertion fnrelpredd φ Pred S F C F D = F Pred R C D

Proof

Step Hyp Ref Expression
1 fnrelpredd.1 φ F Fn A
2 fnrelpredd.2 φ x A y A x R y F x S F y
3 fnrelpredd.3 φ C A
4 fnrelpredd.4 φ D A
5 fvex F D V
6 5 dfpred3 Pred S F C F D = v F C | v S F D
7 elrabi u x C | F x S F D u C
8 7 anim1i u x C | F x S F D F u = v u C F u = v
9 8 reximi2 u x C | F x S F D F u = v u C F u = v
10 1 3 fvelimabd φ v F C u C F u = v
11 9 10 syl5ibr φ u x C | F x S F D F u = v v F C
12 fveq2 x = u F x = F u
13 12 breq1d x = u F x S F D F u S F D
14 13 elrab u x C | F x S F D u C F u S F D
15 breq1 F u = v F u S F D v S F D
16 15 biimpac F u S F D F u = v v S F D
17 16 adantll u C F u S F D F u = v v S F D
18 14 17 sylanb u x C | F x S F D F u = v v S F D
19 18 rexlimiva u x C | F x S F D F u = v v S F D
20 11 19 jca2 φ u x C | F x S F D F u = v v F C v S F D
21 10 biimpd φ v F C u C F u = v
22 21 adantrd φ v F C v S F D u C F u = v
23 simpl u C F u = v u C
24 23 a1i v S F D u C F u = v u C
25 15 biimprcd v S F D F u = v F u S F D
26 25 adantld v S F D u C F u = v F u S F D
27 simpr u C F u = v F u = v
28 27 a1i v S F D u C F u = v F u = v
29 24 26 28 3jcad v S F D u C F u = v u C F u S F D F u = v
30 14 biimpri u C F u S F D u x C | F x S F D
31 30 anim1i u C F u S F D F u = v u x C | F x S F D F u = v
32 31 3impa u C F u S F D F u = v u x C | F x S F D F u = v
33 29 32 syl6 v S F D u C F u = v u x C | F x S F D F u = v
34 33 reximdv2 v S F D u C F u = v u x C | F x S F D F u = v
35 34 adantl v F C v S F D u C F u = v u x C | F x S F D F u = v
36 22 35 sylcom φ v F C v S F D u x C | F x S F D F u = v
37 20 36 impbid φ u x C | F x S F D F u = v v F C v S F D
38 37 abbidv φ v | u x C | F x S F D F u = v = v | v F C v S F D
39 df-rab v F C | v S F D = v | v F C v S F D
40 38 39 eqtr4di φ v | u x C | F x S F D F u = v = v F C | v S F D
41 6 40 eqtr4id φ Pred S F C F D = v | u x C | F x S F D F u = v
42 fnfun F Fn A Fun F
43 1 42 syl φ Fun F
44 ssrab2 x C | F x S F D C
45 44 3 sstrid φ x C | F x S F D A
46 1 fndmd φ dom F = A
47 45 46 sseqtrrd φ x C | F x S F D dom F
48 dfimafn Fun F x C | F x S F D dom F F x C | F x S F D = v | u x C | F x S F D F u = v
49 43 47 48 syl2anc φ F x C | F x S F D = v | u x C | F x S F D F u = v
50 41 49 eqtr4d φ Pred S F C F D = F x C | F x S F D
51 dfpred3g D A Pred R C D = x C | x R D
52 4 51 syl φ Pred R C D = x C | x R D
53 3 sselda φ x C x A
54 2 r19.21bi φ x A y A x R y F x S F y
55 breq2 y = D x R y x R D
56 fveq2 y = D F y = F D
57 56 breq2d y = D F x S F y F x S F D
58 55 57 bibi12d y = D x R y F x S F y x R D F x S F D
59 58 rspcv D A y A x R y F x S F y x R D F x S F D
60 4 59 syl φ y A x R y F x S F y x R D F x S F D
61 60 adantr φ x A y A x R y F x S F y x R D F x S F D
62 54 61 mpd φ x A x R D F x S F D
63 53 62 syldan φ x C x R D F x S F D
64 63 rabbidva φ x C | x R D = x C | F x S F D
65 52 64 eqtrd φ Pred R C D = x C | F x S F D
66 65 imaeq2d φ F Pred R C D = F x C | F x S F D
67 50 66 eqtr4d φ Pred S F C F D = F Pred R C D