Step |
Hyp |
Ref |
Expression |
1 |
|
cardf2 |
|- card : { x | E. y e. On y ~~ x } --> On |
2 |
|
ffun |
|- ( card : { x | E. y e. On y ~~ x } --> On -> Fun card ) |
3 |
2
|
funfnd |
|- ( card : { x | E. y e. On y ~~ x } --> On -> card Fn dom card ) |
4 |
1 3
|
mp1i |
|- ( ( A C_ dom card /\ B e. dom card ) -> card Fn dom card ) |
5 |
|
fvex |
|- ( card ` y ) e. _V |
6 |
5
|
epeli |
|- ( ( card ` x ) _E ( card ` y ) <-> ( card ` x ) e. ( card ` y ) ) |
7 |
|
cardsdom2 |
|- ( ( x e. dom card /\ y e. dom card ) -> ( ( card ` x ) e. ( card ` y ) <-> x ~< y ) ) |
8 |
6 7
|
bitr2id |
|- ( ( x e. dom card /\ y e. dom card ) -> ( x ~< y <-> ( card ` x ) _E ( card ` y ) ) ) |
9 |
8
|
rgen2 |
|- A. x e. dom card A. y e. dom card ( x ~< y <-> ( card ` x ) _E ( card ` y ) ) |
10 |
9
|
a1i |
|- ( ( A C_ dom card /\ B e. dom card ) -> A. x e. dom card A. y e. dom card ( x ~< y <-> ( card ` x ) _E ( card ` y ) ) ) |
11 |
|
simpl |
|- ( ( A C_ dom card /\ B e. dom card ) -> A C_ dom card ) |
12 |
|
simpr |
|- ( ( A C_ dom card /\ B e. dom card ) -> B e. dom card ) |
13 |
4 10 11 12
|
fnrelpredd |
|- ( ( A C_ dom card /\ B e. dom card ) -> Pred ( _E , ( card " A ) , ( card ` B ) ) = ( card " Pred ( ~< , A , B ) ) ) |