Step |
Hyp |
Ref |
Expression |
1 |
|
cardf2 |
|- card : { z | E. y e. On y ~~ z } --> On |
2 |
|
ffun |
|- ( card : { z | E. y e. On y ~~ z } --> On -> Fun card ) |
3 |
2
|
funfnd |
|- ( card : { z | E. y e. On y ~~ z } --> On -> card Fn dom card ) |
4 |
1 3
|
ax-mp |
|- card Fn dom card |
5 |
|
fnimaeq0 |
|- ( ( card Fn dom card /\ A C_ dom card ) -> ( ( card " A ) = (/) <-> A = (/) ) ) |
6 |
4 5
|
mpan |
|- ( A C_ dom card -> ( ( card " A ) = (/) <-> A = (/) ) ) |
7 |
6
|
necon3bid |
|- ( A C_ dom card -> ( ( card " A ) =/= (/) <-> A =/= (/) ) ) |
8 |
7
|
biimprd |
|- ( A C_ dom card -> ( A =/= (/) -> ( card " A ) =/= (/) ) ) |
9 |
8
|
imdistani |
|- ( ( A C_ dom card /\ A =/= (/) ) -> ( A C_ dom card /\ ( card " A ) =/= (/) ) ) |
10 |
|
fimass |
|- ( card : { z | E. y e. On y ~~ z } --> On -> ( card " A ) C_ On ) |
11 |
1 10
|
ax-mp |
|- ( card " A ) C_ On |
12 |
|
onssmin |
|- ( ( ( card " A ) C_ On /\ ( card " A ) =/= (/) ) -> E. z e. ( card " A ) A. y e. ( card " A ) z C_ y ) |
13 |
11 12
|
mpan |
|- ( ( card " A ) =/= (/) -> E. z e. ( card " A ) A. y e. ( card " A ) z C_ y ) |
14 |
|
ssel |
|- ( ( card " A ) C_ On -> ( z e. ( card " A ) -> z e. On ) ) |
15 |
|
ssel |
|- ( ( card " A ) C_ On -> ( y e. ( card " A ) -> y e. On ) ) |
16 |
14 15
|
anim12d |
|- ( ( card " A ) C_ On -> ( ( z e. ( card " A ) /\ y e. ( card " A ) ) -> ( z e. On /\ y e. On ) ) ) |
17 |
11 16
|
ax-mp |
|- ( ( z e. ( card " A ) /\ y e. ( card " A ) ) -> ( z e. On /\ y e. On ) ) |
18 |
|
ontri1 |
|- ( ( z e. On /\ y e. On ) -> ( z C_ y <-> -. y e. z ) ) |
19 |
17 18
|
syl |
|- ( ( z e. ( card " A ) /\ y e. ( card " A ) ) -> ( z C_ y <-> -. y e. z ) ) |
20 |
|
epel |
|- ( y _E z <-> y e. z ) |
21 |
20
|
notbii |
|- ( -. y _E z <-> -. y e. z ) |
22 |
19 21
|
bitr4di |
|- ( ( z e. ( card " A ) /\ y e. ( card " A ) ) -> ( z C_ y <-> -. y _E z ) ) |
23 |
22
|
rgen2 |
|- A. z e. ( card " A ) A. y e. ( card " A ) ( z C_ y <-> -. y _E z ) |
24 |
|
r19.29r |
|- ( ( E. z e. ( card " A ) A. y e. ( card " A ) z C_ y /\ A. z e. ( card " A ) A. y e. ( card " A ) ( z C_ y <-> -. y _E z ) ) -> E. z e. ( card " A ) ( A. y e. ( card " A ) z C_ y /\ A. y e. ( card " A ) ( z C_ y <-> -. y _E z ) ) ) |
25 |
13 23 24
|
sylancl |
|- ( ( card " A ) =/= (/) -> E. z e. ( card " A ) ( A. y e. ( card " A ) z C_ y /\ A. y e. ( card " A ) ( z C_ y <-> -. y _E z ) ) ) |
26 |
|
r19.26 |
|- ( A. y e. ( card " A ) ( z C_ y /\ ( z C_ y <-> -. y _E z ) ) <-> ( A. y e. ( card " A ) z C_ y /\ A. y e. ( card " A ) ( z C_ y <-> -. y _E z ) ) ) |
27 |
|
bicom1 |
|- ( ( z C_ y <-> -. y _E z ) -> ( -. y _E z <-> z C_ y ) ) |
28 |
27
|
biimparc |
|- ( ( z C_ y /\ ( z C_ y <-> -. y _E z ) ) -> -. y _E z ) |
29 |
28
|
ralimi |
|- ( A. y e. ( card " A ) ( z C_ y /\ ( z C_ y <-> -. y _E z ) ) -> A. y e. ( card " A ) -. y _E z ) |
30 |
26 29
|
sylbir |
|- ( ( A. y e. ( card " A ) z C_ y /\ A. y e. ( card " A ) ( z C_ y <-> -. y _E z ) ) -> A. y e. ( card " A ) -. y _E z ) |
31 |
30
|
reximi |
|- ( E. z e. ( card " A ) ( A. y e. ( card " A ) z C_ y /\ A. y e. ( card " A ) ( z C_ y <-> -. y _E z ) ) -> E. z e. ( card " A ) A. y e. ( card " A ) -. y _E z ) |
32 |
25 31
|
syl |
|- ( ( card " A ) =/= (/) -> E. z e. ( card " A ) A. y e. ( card " A ) -. y _E z ) |
33 |
32
|
adantl |
|- ( ( A C_ dom card /\ ( card " A ) =/= (/) ) -> E. z e. ( card " A ) A. y e. ( card " A ) -. y _E z ) |
34 |
|
breq2 |
|- ( z = ( card ` x ) -> ( y _E z <-> y _E ( card ` x ) ) ) |
35 |
34
|
notbid |
|- ( z = ( card ` x ) -> ( -. y _E z <-> -. y _E ( card ` x ) ) ) |
36 |
35
|
ralbidv |
|- ( z = ( card ` x ) -> ( A. y e. ( card " A ) -. y _E z <-> A. y e. ( card " A ) -. y _E ( card ` x ) ) ) |
37 |
36
|
rexima |
|- ( ( card Fn dom card /\ A C_ dom card ) -> ( E. z e. ( card " A ) A. y e. ( card " A ) -. y _E z <-> E. x e. A A. y e. ( card " A ) -. y _E ( card ` x ) ) ) |
38 |
4 37
|
mpan |
|- ( A C_ dom card -> ( E. z e. ( card " A ) A. y e. ( card " A ) -. y _E z <-> E. x e. A A. y e. ( card " A ) -. y _E ( card ` x ) ) ) |
39 |
38
|
adantr |
|- ( ( A C_ dom card /\ ( card " A ) =/= (/) ) -> ( E. z e. ( card " A ) A. y e. ( card " A ) -. y _E z <-> E. x e. A A. y e. ( card " A ) -. y _E ( card ` x ) ) ) |
40 |
33 39
|
mpbid |
|- ( ( A C_ dom card /\ ( card " A ) =/= (/) ) -> E. x e. A A. y e. ( card " A ) -. y _E ( card ` x ) ) |
41 |
|
fvex |
|- ( card ` x ) e. _V |
42 |
41
|
dfpred3 |
|- Pred ( _E , ( card " A ) , ( card ` x ) ) = { y e. ( card " A ) | y _E ( card ` x ) } |
43 |
42
|
eqeq1i |
|- ( Pred ( _E , ( card " A ) , ( card ` x ) ) = (/) <-> { y e. ( card " A ) | y _E ( card ` x ) } = (/) ) |
44 |
|
rabeq0 |
|- ( { y e. ( card " A ) | y _E ( card ` x ) } = (/) <-> A. y e. ( card " A ) -. y _E ( card ` x ) ) |
45 |
43 44
|
bitri |
|- ( Pred ( _E , ( card " A ) , ( card ` x ) ) = (/) <-> A. y e. ( card " A ) -. y _E ( card ` x ) ) |
46 |
45
|
rexbii |
|- ( E. x e. A Pred ( _E , ( card " A ) , ( card ` x ) ) = (/) <-> E. x e. A A. y e. ( card " A ) -. y _E ( card ` x ) ) |
47 |
40 46
|
sylibr |
|- ( ( A C_ dom card /\ ( card " A ) =/= (/) ) -> E. x e. A Pred ( _E , ( card " A ) , ( card ` x ) ) = (/) ) |
48 |
9 47
|
syl |
|- ( ( A C_ dom card /\ A =/= (/) ) -> E. x e. A Pred ( _E , ( card " A ) , ( card ` x ) ) = (/) ) |
49 |
|
ssel2 |
|- ( ( A C_ dom card /\ x e. A ) -> x e. dom card ) |
50 |
|
cardpred |
|- ( ( A C_ dom card /\ x e. dom card ) -> Pred ( _E , ( card " A ) , ( card ` x ) ) = ( card " Pred ( ~< , A , x ) ) ) |
51 |
50
|
eqeq1d |
|- ( ( A C_ dom card /\ x e. dom card ) -> ( Pred ( _E , ( card " A ) , ( card ` x ) ) = (/) <-> ( card " Pred ( ~< , A , x ) ) = (/) ) ) |
52 |
|
predss |
|- Pred ( ~< , A , x ) C_ A |
53 |
|
sstr |
|- ( ( Pred ( ~< , A , x ) C_ A /\ A C_ dom card ) -> Pred ( ~< , A , x ) C_ dom card ) |
54 |
52 53
|
mpan |
|- ( A C_ dom card -> Pred ( ~< , A , x ) C_ dom card ) |
55 |
|
fnimaeq0 |
|- ( ( card Fn dom card /\ Pred ( ~< , A , x ) C_ dom card ) -> ( ( card " Pred ( ~< , A , x ) ) = (/) <-> Pred ( ~< , A , x ) = (/) ) ) |
56 |
4 54 55
|
sylancr |
|- ( A C_ dom card -> ( ( card " Pred ( ~< , A , x ) ) = (/) <-> Pred ( ~< , A , x ) = (/) ) ) |
57 |
56
|
adantr |
|- ( ( A C_ dom card /\ x e. dom card ) -> ( ( card " Pred ( ~< , A , x ) ) = (/) <-> Pred ( ~< , A , x ) = (/) ) ) |
58 |
51 57
|
bitrd |
|- ( ( A C_ dom card /\ x e. dom card ) -> ( Pred ( _E , ( card " A ) , ( card ` x ) ) = (/) <-> Pred ( ~< , A , x ) = (/) ) ) |
59 |
49 58
|
syldan |
|- ( ( A C_ dom card /\ x e. A ) -> ( Pred ( _E , ( card " A ) , ( card ` x ) ) = (/) <-> Pred ( ~< , A , x ) = (/) ) ) |
60 |
59
|
rexbidva |
|- ( A C_ dom card -> ( E. x e. A Pred ( _E , ( card " A ) , ( card ` x ) ) = (/) <-> E. x e. A Pred ( ~< , A , x ) = (/) ) ) |
61 |
60
|
adantr |
|- ( ( A C_ dom card /\ A =/= (/) ) -> ( E. x e. A Pred ( _E , ( card " A ) , ( card ` x ) ) = (/) <-> E. x e. A Pred ( ~< , A , x ) = (/) ) ) |
62 |
48 61
|
mpbid |
|- ( ( A C_ dom card /\ A =/= (/) ) -> E. x e. A Pred ( ~< , A , x ) = (/) ) |