Metamath Proof Explorer


Theorem onssmin

Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of TakeutiZaring p. 40. (Contributed by NM, 3-Oct-2003)

Ref Expression
Assertion onssmin
|- ( ( A C_ On /\ A =/= (/) ) -> E. x e. A A. y e. A x C_ y )

Proof

Step Hyp Ref Expression
1 onint
 |-  ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A )
2 intss1
 |-  ( y e. A -> |^| A C_ y )
3 2 rgen
 |-  A. y e. A |^| A C_ y
4 sseq1
 |-  ( x = |^| A -> ( x C_ y <-> |^| A C_ y ) )
5 4 ralbidv
 |-  ( x = |^| A -> ( A. y e. A x C_ y <-> A. y e. A |^| A C_ y ) )
6 5 rspcev
 |-  ( ( |^| A e. A /\ A. y e. A |^| A C_ y ) -> E. x e. A A. y e. A x C_ y )
7 1 3 6 sylancl
 |-  ( ( A C_ On /\ A =/= (/) ) -> E. x e. A A. y e. A x C_ y )