Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of TakeutiZaring p. 40. (Contributed by NM, 3-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | onssmin | |- ( ( A C_ On /\ A =/= (/) ) -> E. x e. A A. y e. A x C_ y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint | |- ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) |
|
2 | intss1 | |- ( y e. A -> |^| A C_ y ) |
|
3 | 2 | rgen | |- A. y e. A |^| A C_ y |
4 | sseq1 | |- ( x = |^| A -> ( x C_ y <-> |^| A C_ y ) ) |
|
5 | 4 | ralbidv | |- ( x = |^| A -> ( A. y e. A x C_ y <-> A. y e. A |^| A C_ y ) ) |
6 | 5 | rspcev | |- ( ( |^| A e. A /\ A. y e. A |^| A C_ y ) -> E. x e. A A. y e. A x C_ y ) |
7 | 1 3 6 | sylancl | |- ( ( A C_ On /\ A =/= (/) ) -> E. x e. A A. y e. A x C_ y ) |