Metamath Proof Explorer


Theorem onssmin

Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of TakeutiZaring p. 40. (Contributed by NM, 3-Oct-2003)

Ref Expression
Assertion onssmin ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 onint ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 )
2 intss1 ( 𝑦𝐴 𝐴𝑦 )
3 2 rgen 𝑦𝐴 𝐴𝑦
4 sseq1 ( 𝑥 = 𝐴 → ( 𝑥𝑦 𝐴𝑦 ) )
5 4 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦𝐴 𝑥𝑦 ↔ ∀ 𝑦𝐴 𝐴𝑦 ) )
6 5 rspcev ( ( 𝐴𝐴 ∧ ∀ 𝑦𝐴 𝐴𝑦 ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 )
7 1 3 6 sylancl ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 )