Description: A nonempty class of ordinal numbers has the smallest member. Exercise 9 of TakeutiZaring p. 40. (Contributed by NM, 3-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | onssmin | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onint | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝐴 ) | |
2 | intss1 | ⊢ ( 𝑦 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑦 ) | |
3 | 2 | rgen | ⊢ ∀ 𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦 |
4 | sseq1 | ⊢ ( 𝑥 = ∩ 𝐴 → ( 𝑥 ⊆ 𝑦 ↔ ∩ 𝐴 ⊆ 𝑦 ) ) | |
5 | 4 | ralbidv | ⊢ ( 𝑥 = ∩ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦 ) ) |
6 | 5 | rspcev | ⊢ ( ( ∩ 𝐴 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∩ 𝐴 ⊆ 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |
7 | 1 3 6 | sylancl | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦 ) |