| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cardf2 | ⊢ card : { 𝑧  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑧 } ⟶ On | 
						
							| 2 |  | ffun | ⊢ ( card : { 𝑧  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑧 } ⟶ On  →  Fun  card ) | 
						
							| 3 | 2 | funfnd | ⊢ ( card : { 𝑧  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑧 } ⟶ On  →  card  Fn  dom  card ) | 
						
							| 4 | 1 3 | ax-mp | ⊢ card  Fn  dom  card | 
						
							| 5 |  | fnimaeq0 | ⊢ ( ( card  Fn  dom  card  ∧  𝐴  ⊆  dom  card )  →  ( ( card  “  𝐴 )  =  ∅  ↔  𝐴  =  ∅ ) ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( 𝐴  ⊆  dom  card  →  ( ( card  “  𝐴 )  =  ∅  ↔  𝐴  =  ∅ ) ) | 
						
							| 7 | 6 | necon3bid | ⊢ ( 𝐴  ⊆  dom  card  →  ( ( card  “  𝐴 )  ≠  ∅  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 8 | 7 | biimprd | ⊢ ( 𝐴  ⊆  dom  card  →  ( 𝐴  ≠  ∅  →  ( card  “  𝐴 )  ≠  ∅ ) ) | 
						
							| 9 | 8 | imdistani | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  𝐴  ≠  ∅ )  →  ( 𝐴  ⊆  dom  card  ∧  ( card  “  𝐴 )  ≠  ∅ ) ) | 
						
							| 10 |  | fimass | ⊢ ( card : { 𝑧  ∣  ∃ 𝑦  ∈  On 𝑦  ≈  𝑧 } ⟶ On  →  ( card  “  𝐴 )  ⊆  On ) | 
						
							| 11 | 1 10 | ax-mp | ⊢ ( card  “  𝐴 )  ⊆  On | 
						
							| 12 |  | onssmin | ⊢ ( ( ( card  “  𝐴 )  ⊆  On  ∧  ( card  “  𝐴 )  ≠  ∅ )  →  ∃ 𝑧  ∈  ( card  “  𝐴 ) ∀ 𝑦  ∈  ( card  “  𝐴 ) 𝑧  ⊆  𝑦 ) | 
						
							| 13 | 11 12 | mpan | ⊢ ( ( card  “  𝐴 )  ≠  ∅  →  ∃ 𝑧  ∈  ( card  “  𝐴 ) ∀ 𝑦  ∈  ( card  “  𝐴 ) 𝑧  ⊆  𝑦 ) | 
						
							| 14 |  | ssel | ⊢ ( ( card  “  𝐴 )  ⊆  On  →  ( 𝑧  ∈  ( card  “  𝐴 )  →  𝑧  ∈  On ) ) | 
						
							| 15 |  | ssel | ⊢ ( ( card  “  𝐴 )  ⊆  On  →  ( 𝑦  ∈  ( card  “  𝐴 )  →  𝑦  ∈  On ) ) | 
						
							| 16 | 14 15 | anim12d | ⊢ ( ( card  “  𝐴 )  ⊆  On  →  ( ( 𝑧  ∈  ( card  “  𝐴 )  ∧  𝑦  ∈  ( card  “  𝐴 ) )  →  ( 𝑧  ∈  On  ∧  𝑦  ∈  On ) ) ) | 
						
							| 17 | 11 16 | ax-mp | ⊢ ( ( 𝑧  ∈  ( card  “  𝐴 )  ∧  𝑦  ∈  ( card  “  𝐴 ) )  →  ( 𝑧  ∈  On  ∧  𝑦  ∈  On ) ) | 
						
							| 18 |  | ontri1 | ⊢ ( ( 𝑧  ∈  On  ∧  𝑦  ∈  On )  →  ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  ∈  𝑧 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝑧  ∈  ( card  “  𝐴 )  ∧  𝑦  ∈  ( card  “  𝐴 ) )  →  ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  ∈  𝑧 ) ) | 
						
							| 20 |  | epel | ⊢ ( 𝑦  E  𝑧  ↔  𝑦  ∈  𝑧 ) | 
						
							| 21 | 20 | notbii | ⊢ ( ¬  𝑦  E  𝑧  ↔  ¬  𝑦  ∈  𝑧 ) | 
						
							| 22 | 19 21 | bitr4di | ⊢ ( ( 𝑧  ∈  ( card  “  𝐴 )  ∧  𝑦  ∈  ( card  “  𝐴 ) )  →  ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 ) ) | 
						
							| 23 | 22 | rgen2 | ⊢ ∀ 𝑧  ∈  ( card  “  𝐴 ) ∀ 𝑦  ∈  ( card  “  𝐴 ) ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 ) | 
						
							| 24 |  | r19.29r | ⊢ ( ( ∃ 𝑧  ∈  ( card  “  𝐴 ) ∀ 𝑦  ∈  ( card  “  𝐴 ) 𝑧  ⊆  𝑦  ∧  ∀ 𝑧  ∈  ( card  “  𝐴 ) ∀ 𝑦  ∈  ( card  “  𝐴 ) ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 ) )  →  ∃ 𝑧  ∈  ( card  “  𝐴 ) ( ∀ 𝑦  ∈  ( card  “  𝐴 ) 𝑧  ⊆  𝑦  ∧  ∀ 𝑦  ∈  ( card  “  𝐴 ) ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 ) ) ) | 
						
							| 25 | 13 23 24 | sylancl | ⊢ ( ( card  “  𝐴 )  ≠  ∅  →  ∃ 𝑧  ∈  ( card  “  𝐴 ) ( ∀ 𝑦  ∈  ( card  “  𝐴 ) 𝑧  ⊆  𝑦  ∧  ∀ 𝑦  ∈  ( card  “  𝐴 ) ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 ) ) ) | 
						
							| 26 |  | r19.26 | ⊢ ( ∀ 𝑦  ∈  ( card  “  𝐴 ) ( 𝑧  ⊆  𝑦  ∧  ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 ) )  ↔  ( ∀ 𝑦  ∈  ( card  “  𝐴 ) 𝑧  ⊆  𝑦  ∧  ∀ 𝑦  ∈  ( card  “  𝐴 ) ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 ) ) ) | 
						
							| 27 |  | bicom1 | ⊢ ( ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 )  →  ( ¬  𝑦  E  𝑧  ↔  𝑧  ⊆  𝑦 ) ) | 
						
							| 28 | 27 | biimparc | ⊢ ( ( 𝑧  ⊆  𝑦  ∧  ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 ) )  →  ¬  𝑦  E  𝑧 ) | 
						
							| 29 | 28 | ralimi | ⊢ ( ∀ 𝑦  ∈  ( card  “  𝐴 ) ( 𝑧  ⊆  𝑦  ∧  ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 ) )  →  ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  𝑧 ) | 
						
							| 30 | 26 29 | sylbir | ⊢ ( ( ∀ 𝑦  ∈  ( card  “  𝐴 ) 𝑧  ⊆  𝑦  ∧  ∀ 𝑦  ∈  ( card  “  𝐴 ) ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 ) )  →  ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  𝑧 ) | 
						
							| 31 | 30 | reximi | ⊢ ( ∃ 𝑧  ∈  ( card  “  𝐴 ) ( ∀ 𝑦  ∈  ( card  “  𝐴 ) 𝑧  ⊆  𝑦  ∧  ∀ 𝑦  ∈  ( card  “  𝐴 ) ( 𝑧  ⊆  𝑦  ↔  ¬  𝑦  E  𝑧 ) )  →  ∃ 𝑧  ∈  ( card  “  𝐴 ) ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  𝑧 ) | 
						
							| 32 | 25 31 | syl | ⊢ ( ( card  “  𝐴 )  ≠  ∅  →  ∃ 𝑧  ∈  ( card  “  𝐴 ) ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  𝑧 ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  ( card  “  𝐴 )  ≠  ∅ )  →  ∃ 𝑧  ∈  ( card  “  𝐴 ) ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  𝑧 ) | 
						
							| 34 |  | breq2 | ⊢ ( 𝑧  =  ( card ‘ 𝑥 )  →  ( 𝑦  E  𝑧  ↔  𝑦  E  ( card ‘ 𝑥 ) ) ) | 
						
							| 35 | 34 | notbid | ⊢ ( 𝑧  =  ( card ‘ 𝑥 )  →  ( ¬  𝑦  E  𝑧  ↔  ¬  𝑦  E  ( card ‘ 𝑥 ) ) ) | 
						
							| 36 | 35 | ralbidv | ⊢ ( 𝑧  =  ( card ‘ 𝑥 )  →  ( ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  𝑧  ↔  ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  ( card ‘ 𝑥 ) ) ) | 
						
							| 37 | 36 | rexima | ⊢ ( ( card  Fn  dom  card  ∧  𝐴  ⊆  dom  card )  →  ( ∃ 𝑧  ∈  ( card  “  𝐴 ) ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  𝑧  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  ( card ‘ 𝑥 ) ) ) | 
						
							| 38 | 4 37 | mpan | ⊢ ( 𝐴  ⊆  dom  card  →  ( ∃ 𝑧  ∈  ( card  “  𝐴 ) ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  𝑧  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  ( card ‘ 𝑥 ) ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  ( card  “  𝐴 )  ≠  ∅ )  →  ( ∃ 𝑧  ∈  ( card  “  𝐴 ) ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  𝑧  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  ( card ‘ 𝑥 ) ) ) | 
						
							| 40 | 33 39 | mpbid | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  ( card  “  𝐴 )  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  ( card ‘ 𝑥 ) ) | 
						
							| 41 |  | fvex | ⊢ ( card ‘ 𝑥 )  ∈  V | 
						
							| 42 | 41 | dfpred3 | ⊢ Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  { 𝑦  ∈  ( card  “  𝐴 )  ∣  𝑦  E  ( card ‘ 𝑥 ) } | 
						
							| 43 | 42 | eqeq1i | ⊢ ( Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  ∅  ↔  { 𝑦  ∈  ( card  “  𝐴 )  ∣  𝑦  E  ( card ‘ 𝑥 ) }  =  ∅ ) | 
						
							| 44 |  | rabeq0 | ⊢ ( { 𝑦  ∈  ( card  “  𝐴 )  ∣  𝑦  E  ( card ‘ 𝑥 ) }  =  ∅  ↔  ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  ( card ‘ 𝑥 ) ) | 
						
							| 45 | 43 44 | bitri | ⊢ ( Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  ∅  ↔  ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  ( card ‘ 𝑥 ) ) | 
						
							| 46 | 45 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  ∅  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  ( card  “  𝐴 ) ¬  𝑦  E  ( card ‘ 𝑥 ) ) | 
						
							| 47 | 40 46 | sylibr | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  ( card  “  𝐴 )  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  ∅ ) | 
						
							| 48 | 9 47 | syl | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  ∅ ) | 
						
							| 49 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  dom  card ) | 
						
							| 50 |  | cardpred | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  𝑥  ∈  dom  card )  →  Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  ( card  “  Pred (  ≺  ,  𝐴 ,  𝑥 ) ) ) | 
						
							| 51 | 50 | eqeq1d | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  𝑥  ∈  dom  card )  →  ( Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  ∅  ↔  ( card  “  Pred (  ≺  ,  𝐴 ,  𝑥 ) )  =  ∅ ) ) | 
						
							| 52 |  | predss | ⊢ Pred (  ≺  ,  𝐴 ,  𝑥 )  ⊆  𝐴 | 
						
							| 53 |  | sstr | ⊢ ( ( Pred (  ≺  ,  𝐴 ,  𝑥 )  ⊆  𝐴  ∧  𝐴  ⊆  dom  card )  →  Pred (  ≺  ,  𝐴 ,  𝑥 )  ⊆  dom  card ) | 
						
							| 54 | 52 53 | mpan | ⊢ ( 𝐴  ⊆  dom  card  →  Pred (  ≺  ,  𝐴 ,  𝑥 )  ⊆  dom  card ) | 
						
							| 55 |  | fnimaeq0 | ⊢ ( ( card  Fn  dom  card  ∧  Pred (  ≺  ,  𝐴 ,  𝑥 )  ⊆  dom  card )  →  ( ( card  “  Pred (  ≺  ,  𝐴 ,  𝑥 ) )  =  ∅  ↔  Pred (  ≺  ,  𝐴 ,  𝑥 )  =  ∅ ) ) | 
						
							| 56 | 4 54 55 | sylancr | ⊢ ( 𝐴  ⊆  dom  card  →  ( ( card  “  Pred (  ≺  ,  𝐴 ,  𝑥 ) )  =  ∅  ↔  Pred (  ≺  ,  𝐴 ,  𝑥 )  =  ∅ ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  𝑥  ∈  dom  card )  →  ( ( card  “  Pred (  ≺  ,  𝐴 ,  𝑥 ) )  =  ∅  ↔  Pred (  ≺  ,  𝐴 ,  𝑥 )  =  ∅ ) ) | 
						
							| 58 | 51 57 | bitrd | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  𝑥  ∈  dom  card )  →  ( Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  ∅  ↔  Pred (  ≺  ,  𝐴 ,  𝑥 )  =  ∅ ) ) | 
						
							| 59 | 49 58 | syldan | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  𝑥  ∈  𝐴 )  →  ( Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  ∅  ↔  Pred (  ≺  ,  𝐴 ,  𝑥 )  =  ∅ ) ) | 
						
							| 60 | 59 | rexbidva | ⊢ ( 𝐴  ⊆  dom  card  →  ( ∃ 𝑥  ∈  𝐴 Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  ∅  ↔  ∃ 𝑥  ∈  𝐴 Pred (  ≺  ,  𝐴 ,  𝑥 )  =  ∅ ) ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  𝐴  ≠  ∅ )  →  ( ∃ 𝑥  ∈  𝐴 Pred (  E  ,  ( card  “  𝐴 ) ,  ( card ‘ 𝑥 ) )  =  ∅  ↔  ∃ 𝑥  ∈  𝐴 Pred (  ≺  ,  𝐴 ,  𝑥 )  =  ∅ ) ) | 
						
							| 62 | 48 61 | mpbid | ⊢ ( ( 𝐴  ⊆  dom  card  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 Pred (  ≺  ,  𝐴 ,  𝑥 )  =  ∅ ) |