Metamath Proof Explorer


Theorem funen1cnv

Description: If a function is equinumerous to ordinal 1, then its converse is also a function. (Contributed by BTernaryTau, 8-Oct-2023)

Ref Expression
Assertion funen1cnv ( ( Fun 𝐹𝐹 ≈ 1o ) → Fun 𝐹 )

Proof

Step Hyp Ref Expression
1 en1 ( 𝐹 ≈ 1o ↔ ∃ 𝑝 𝐹 = { 𝑝 } )
2 funrel ( Fun { 𝑝 } → Rel { 𝑝 } )
3 vsnid 𝑝 ∈ { 𝑝 }
4 elrel ( ( Rel { 𝑝 } ∧ 𝑝 ∈ { 𝑝 } ) → ∃ 𝑥𝑦 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ )
5 2 3 4 sylancl ( Fun { 𝑝 } → ∃ 𝑥𝑦 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ )
6 sneq ( 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → { 𝑝 } = { ⟨ 𝑥 , 𝑦 ⟩ } )
7 6 2eximi ( ∃ 𝑥𝑦 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑥𝑦 { 𝑝 } = { ⟨ 𝑥 , 𝑦 ⟩ } )
8 5 7 syl ( Fun { 𝑝 } → ∃ 𝑥𝑦 { 𝑝 } = { ⟨ 𝑥 , 𝑦 ⟩ } )
9 funcnvsn Fun { ⟨ 𝑥 , 𝑦 ⟩ }
10 9 gen2 𝑥𝑦 Fun { ⟨ 𝑥 , 𝑦 ⟩ }
11 19.29r2 ( ( ∃ 𝑥𝑦 { 𝑝 } = { ⟨ 𝑥 , 𝑦 ⟩ } ∧ ∀ 𝑥𝑦 Fun { ⟨ 𝑥 , 𝑦 ⟩ } ) → ∃ 𝑥𝑦 ( { 𝑝 } = { ⟨ 𝑥 , 𝑦 ⟩ } ∧ Fun { ⟨ 𝑥 , 𝑦 ⟩ } ) )
12 cnveq ( { 𝑝 } = { ⟨ 𝑥 , 𝑦 ⟩ } → { 𝑝 } = { ⟨ 𝑥 , 𝑦 ⟩ } )
13 12 funeqd ( { 𝑝 } = { ⟨ 𝑥 , 𝑦 ⟩ } → ( Fun { 𝑝 } ↔ Fun { ⟨ 𝑥 , 𝑦 ⟩ } ) )
14 13 biimpar ( ( { 𝑝 } = { ⟨ 𝑥 , 𝑦 ⟩ } ∧ Fun { ⟨ 𝑥 , 𝑦 ⟩ } ) → Fun { 𝑝 } )
15 14 exlimivv ( ∃ 𝑥𝑦 ( { 𝑝 } = { ⟨ 𝑥 , 𝑦 ⟩ } ∧ Fun { ⟨ 𝑥 , 𝑦 ⟩ } ) → Fun { 𝑝 } )
16 11 15 syl ( ( ∃ 𝑥𝑦 { 𝑝 } = { ⟨ 𝑥 , 𝑦 ⟩ } ∧ ∀ 𝑥𝑦 Fun { ⟨ 𝑥 , 𝑦 ⟩ } ) → Fun { 𝑝 } )
17 8 10 16 sylancl ( Fun { 𝑝 } → Fun { 𝑝 } )
18 17 ax-gen 𝑝 ( Fun { 𝑝 } → Fun { 𝑝 } )
19 19.29r ( ( ∃ 𝑝 𝐹 = { 𝑝 } ∧ ∀ 𝑝 ( Fun { 𝑝 } → Fun { 𝑝 } ) ) → ∃ 𝑝 ( 𝐹 = { 𝑝 } ∧ ( Fun { 𝑝 } → Fun { 𝑝 } ) ) )
20 funeq ( 𝐹 = { 𝑝 } → ( Fun 𝐹 ↔ Fun { 𝑝 } ) )
21 cnveq ( 𝐹 = { 𝑝 } → 𝐹 = { 𝑝 } )
22 21 funeqd ( 𝐹 = { 𝑝 } → ( Fun 𝐹 ↔ Fun { 𝑝 } ) )
23 20 22 imbi12d ( 𝐹 = { 𝑝 } → ( ( Fun 𝐹 → Fun 𝐹 ) ↔ ( Fun { 𝑝 } → Fun { 𝑝 } ) ) )
24 23 biimpar ( ( 𝐹 = { 𝑝 } ∧ ( Fun { 𝑝 } → Fun { 𝑝 } ) ) → ( Fun 𝐹 → Fun 𝐹 ) )
25 24 exlimiv ( ∃ 𝑝 ( 𝐹 = { 𝑝 } ∧ ( Fun { 𝑝 } → Fun { 𝑝 } ) ) → ( Fun 𝐹 → Fun 𝐹 ) )
26 19 25 syl ( ( ∃ 𝑝 𝐹 = { 𝑝 } ∧ ∀ 𝑝 ( Fun { 𝑝 } → Fun { 𝑝 } ) ) → ( Fun 𝐹 → Fun 𝐹 ) )
27 18 26 mpan2 ( ∃ 𝑝 𝐹 = { 𝑝 } → ( Fun 𝐹 → Fun 𝐹 ) )
28 1 27 sylbi ( 𝐹 ≈ 1o → ( Fun 𝐹 → Fun 𝐹 ) )
29 28 impcom ( ( Fun 𝐹𝐹 ≈ 1o ) → Fun 𝐹 )