Description: Variation of 19.29r with double quantification. (Contributed by NM, 3-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.29r2 | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) → ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.29r | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) → ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) ) | |
2 | 19.29r | ⊢ ( ( ∃ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) → ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ) | |
3 | 2 | eximi | ⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) → ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ) |
4 | 1 3 | syl | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) → ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ) |