Metamath Proof Explorer


Theorem 19.29r2

Description: Variation of 19.29r with double quantification. (Contributed by NM, 3-Feb-2005)

Ref Expression
Assertion 19.29r2 ( ( ∃ 𝑥𝑦 𝜑 ∧ ∀ 𝑥𝑦 𝜓 ) → ∃ 𝑥𝑦 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.29r ( ( ∃ 𝑥𝑦 𝜑 ∧ ∀ 𝑥𝑦 𝜓 ) → ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) )
2 19.29r ( ( ∃ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) → ∃ 𝑦 ( 𝜑𝜓 ) )
3 2 eximi ( ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) → ∃ 𝑥𝑦 ( 𝜑𝜓 ) )
4 1 3 syl ( ( ∃ 𝑥𝑦 𝜑 ∧ ∀ 𝑥𝑦 𝜓 ) → ∃ 𝑥𝑦 ( 𝜑𝜓 ) )