Metamath Proof Explorer


Theorem f1resrcmplf1d

Description: If a function's restriction to a subclass of its domain and its restriction to the relative complement of that subclass are both one-to-one, and if the ranges of those two restrictions are disjoint, then the function is itself one-to-one. (Contributed by BTernaryTau, 28-Sep-2023)

Ref Expression
Hypotheses f1resrcmplf1d.1 φCA
f1resrcmplf1d.2 φF:AB
f1resrcmplf1d.3 φFC:C1-1B
f1resrcmplf1d.4 φFAC:AC1-1B
f1resrcmplf1d.5 φFCFAC=
Assertion f1resrcmplf1d φF:A1-1B

Proof

Step Hyp Ref Expression
1 f1resrcmplf1d.1 φCA
2 f1resrcmplf1d.2 φF:AB
3 f1resrcmplf1d.3 φFC:C1-1B
4 f1resrcmplf1d.4 φFAC:AC1-1B
5 f1resrcmplf1d.5 φFCFAC=
6 f1resveqaeq FC:C1-1BxCyCFx=Fyx=y
7 3 6 sylan φxCyCFx=Fyx=y
8 7 ex φxCyCFx=Fyx=y
9 difssd φACA
10 1 9 2 5 f1resrcmplf1dlem φxCyACFx=Fyx=y
11 incom FCFAC=FACFC
12 11 5 eqtr3id φFACFC=
13 9 1 2 12 f1resrcmplf1dlem φxACyCFx=Fyx=y
14 f1resveqaeq FAC:AC1-1BxACyACFx=Fyx=y
15 4 14 sylan φxACyACFx=Fyx=y
16 15 ex φxACyACFx=Fyx=y
17 8 10 13 16 prsrcmpltd φxAyAFx=Fyx=y
18 17 ralrimivv φxAyAFx=Fyx=y
19 dff13 F:A1-1BF:ABxAyAFx=Fyx=y
20 2 18 19 sylanbrc φF:A1-1B