Metamath Proof Explorer


Theorem f1resrcmplf1d

Description: If a function's restriction to a subclass of its domain and its restriction to the relative complement of that subclass are both one-to-one, and if the ranges of those two restrictions are disjoint, then the function is itself one-to-one. (Contributed by BTernaryTau, 28-Sep-2023)

Ref Expression
Hypotheses f1resrcmplf1d.1 φ C A
f1resrcmplf1d.2 φ F : A B
f1resrcmplf1d.3 φ F C : C 1-1 B
f1resrcmplf1d.4 φ F A C : A C 1-1 B
f1resrcmplf1d.5 φ F C F A C =
Assertion f1resrcmplf1d φ F : A 1-1 B

Proof

Step Hyp Ref Expression
1 f1resrcmplf1d.1 φ C A
2 f1resrcmplf1d.2 φ F : A B
3 f1resrcmplf1d.3 φ F C : C 1-1 B
4 f1resrcmplf1d.4 φ F A C : A C 1-1 B
5 f1resrcmplf1d.5 φ F C F A C =
6 f1resveqaeq F C : C 1-1 B x C y C F x = F y x = y
7 3 6 sylan φ x C y C F x = F y x = y
8 7 ex φ x C y C F x = F y x = y
9 difssd φ A C A
10 1 9 2 5 f1resrcmplf1dlem φ x C y A C F x = F y x = y
11 incom F C F A C = F A C F C
12 11 5 syl5eqr φ F A C F C =
13 9 1 2 12 f1resrcmplf1dlem φ x A C y C F x = F y x = y
14 f1resveqaeq F A C : A C 1-1 B x A C y A C F x = F y x = y
15 4 14 sylan φ x A C y A C F x = F y x = y
16 15 ex φ x A C y A C F x = F y x = y
17 8 10 13 16 prsrcmpltd φ x A y A F x = F y x = y
18 17 ralrimivv φ x A y A F x = F y x = y
19 dff13 F : A 1-1 B F : A B x A y A F x = F y x = y
20 2 18 19 sylanbrc φ F : A 1-1 B