| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 2 |  | fnafv2elrn |  |-  ( ( F Fn A /\ C e. A ) -> ( F '''' C ) e. ran F ) | 
						
							| 3 | 1 2 | sylan |  |-  ( ( F : A --> B /\ C e. A ) -> ( F '''' C ) e. ran F ) | 
						
							| 4 | 3 | ex |  |-  ( F : A --> B -> ( C e. A -> ( F '''' C ) e. ran F ) ) | 
						
							| 5 |  | fdm |  |-  ( F : A --> B -> dom F = A ) | 
						
							| 6 |  | ndmafv2nrn |  |-  ( -. C e. dom F -> ( F '''' C ) e/ ran F ) | 
						
							| 7 |  | df-nel |  |-  ( ( F '''' C ) e/ ran F <-> -. ( F '''' C ) e. ran F ) | 
						
							| 8 | 6 7 | sylib |  |-  ( -. C e. dom F -> -. ( F '''' C ) e. ran F ) | 
						
							| 9 | 8 | con4i |  |-  ( ( F '''' C ) e. ran F -> C e. dom F ) | 
						
							| 10 |  | eleq2 |  |-  ( dom F = A -> ( C e. dom F <-> C e. A ) ) | 
						
							| 11 | 9 10 | imbitrid |  |-  ( dom F = A -> ( ( F '''' C ) e. ran F -> C e. A ) ) | 
						
							| 12 | 5 11 | syl |  |-  ( F : A --> B -> ( ( F '''' C ) e. ran F -> C e. A ) ) | 
						
							| 13 | 4 12 | impbid |  |-  ( F : A --> B -> ( C e. A <-> ( F '''' C ) e. ran F ) ) |