| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 2 |  | fnafv2elrn | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐶  ∈  𝐴 )  →  ( 𝐹 '''' 𝐶 )  ∈  ran  𝐹 ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐶  ∈  𝐴 )  →  ( 𝐹 '''' 𝐶 )  ∈  ran  𝐹 ) | 
						
							| 4 | 3 | ex | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐶  ∈  𝐴  →  ( 𝐹 '''' 𝐶 )  ∈  ran  𝐹 ) ) | 
						
							| 5 |  | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  dom  𝐹  =  𝐴 ) | 
						
							| 6 |  | ndmafv2nrn | ⊢ ( ¬  𝐶  ∈  dom  𝐹  →  ( 𝐹 '''' 𝐶 )  ∉  ran  𝐹 ) | 
						
							| 7 |  | df-nel | ⊢ ( ( 𝐹 '''' 𝐶 )  ∉  ran  𝐹  ↔  ¬  ( 𝐹 '''' 𝐶 )  ∈  ran  𝐹 ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ¬  𝐶  ∈  dom  𝐹  →  ¬  ( 𝐹 '''' 𝐶 )  ∈  ran  𝐹 ) | 
						
							| 9 | 8 | con4i | ⊢ ( ( 𝐹 '''' 𝐶 )  ∈  ran  𝐹  →  𝐶  ∈  dom  𝐹 ) | 
						
							| 10 |  | eleq2 | ⊢ ( dom  𝐹  =  𝐴  →  ( 𝐶  ∈  dom  𝐹  ↔  𝐶  ∈  𝐴 ) ) | 
						
							| 11 | 9 10 | imbitrid | ⊢ ( dom  𝐹  =  𝐴  →  ( ( 𝐹 '''' 𝐶 )  ∈  ran  𝐹  →  𝐶  ∈  𝐴 ) ) | 
						
							| 12 | 5 11 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( ( 𝐹 '''' 𝐶 )  ∈  ran  𝐹  →  𝐶  ∈  𝐴 ) ) | 
						
							| 13 | 4 12 | impbid | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐶  ∈  𝐴  ↔  ( 𝐹 '''' 𝐶 )  ∈  ran  𝐹 ) ) |