| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nelfb |
|- ( F e. ( fBas ` X ) -> -. (/) e. F ) |
| 2 |
1
|
adantr |
|- ( ( F e. ( fBas ` X ) /\ A e. F ) -> -. (/) e. F ) |
| 3 |
|
fbasssin |
|- ( ( F e. ( fBas ` X ) /\ A e. F /\ ( B \ A ) e. F ) -> E. x e. F x C_ ( A i^i ( B \ A ) ) ) |
| 4 |
|
disjdif |
|- ( A i^i ( B \ A ) ) = (/) |
| 5 |
4
|
sseq2i |
|- ( x C_ ( A i^i ( B \ A ) ) <-> x C_ (/) ) |
| 6 |
|
ss0 |
|- ( x C_ (/) -> x = (/) ) |
| 7 |
5 6
|
sylbi |
|- ( x C_ ( A i^i ( B \ A ) ) -> x = (/) ) |
| 8 |
|
eleq1 |
|- ( x = (/) -> ( x e. F <-> (/) e. F ) ) |
| 9 |
8
|
biimpac |
|- ( ( x e. F /\ x = (/) ) -> (/) e. F ) |
| 10 |
7 9
|
sylan2 |
|- ( ( x e. F /\ x C_ ( A i^i ( B \ A ) ) ) -> (/) e. F ) |
| 11 |
10
|
rexlimiva |
|- ( E. x e. F x C_ ( A i^i ( B \ A ) ) -> (/) e. F ) |
| 12 |
3 11
|
syl |
|- ( ( F e. ( fBas ` X ) /\ A e. F /\ ( B \ A ) e. F ) -> (/) e. F ) |
| 13 |
12
|
3expia |
|- ( ( F e. ( fBas ` X ) /\ A e. F ) -> ( ( B \ A ) e. F -> (/) e. F ) ) |
| 14 |
2 13
|
mtod |
|- ( ( F e. ( fBas ` X ) /\ A e. F ) -> -. ( B \ A ) e. F ) |