Description: The Theorem of Fences by Equivalences: all conceivable equivalence relations (besides the comember equivalence relation cf. mpet3 ) generate a partition of the members, it alo means that ( R ErALTV A -> ElDisj A ) and that ( R ErALTV A -> -. (/) e. A ) . (Contributed by Peter Mazsa, 15-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fences2 | |- ( R ErALTV A -> ( ElDisj A /\ -. (/) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fences | |- ( R ErALTV A -> MembPart A ) |
|
| 2 | dfmembpart2 | |- ( MembPart A <-> ( ElDisj A /\ -. (/) e. A ) ) |
|
| 3 | 1 2 | sylib | |- ( R ErALTV A -> ( ElDisj A /\ -. (/) e. A ) ) |