Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 15-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mainer2 | |- ( R ErALTV A -> ( CoElEqvRel A /\ -. (/) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fences2 | |- ( R ErALTV A -> ( ElDisj A /\ -. (/) e. A ) ) |
|
| 2 | eldisjim | |- ( ElDisj A -> CoElEqvRel A ) |
|
| 3 | 2 | anim1i | |- ( ( ElDisj A /\ -. (/) e. A ) -> ( CoElEqvRel A /\ -. (/) e. A ) ) |
| 4 | 1 3 | syl | |- ( R ErALTV A -> ( CoElEqvRel A /\ -. (/) e. A ) ) |