Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 15-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | mainer2 | |- ( R ErALTV A -> ( CoElEqvRel A /\ -. (/) e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fences2 | |- ( R ErALTV A -> ( ElDisj A /\ -. (/) e. A ) ) |
|
2 | eldisjim | |- ( ElDisj A -> CoElEqvRel A ) |
|
3 | 2 | anim1i | |- ( ( ElDisj A /\ -. (/) e. A ) -> ( CoElEqvRel A /\ -. (/) e. A ) ) |
4 | 1 3 | syl | |- ( R ErALTV A -> ( CoElEqvRel A /\ -. (/) e. A ) ) |