Step |
Hyp |
Ref |
Expression |
1 |
|
eldisjn0elb |
|- ( ( ElDisj A /\ -. (/) e. A ) <-> ( Disj ( `' _E |` A ) /\ ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) ) |
2 |
|
eqvrelqseqdisj3 |
|- ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) -> Disj ( `' _E |` A ) ) |
3 |
2
|
petlem |
|- ( ( Disj ( `' _E |` A ) /\ ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) <-> ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) ) |
4 |
|
eqvreldmqs |
|- ( ( EqvRel ,~ ( `' _E |` A ) /\ ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
5 |
1 3 4
|
3bitri |
|- ( ( ElDisj A /\ -. (/) e. A ) <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |