| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fgraphopab |  |-  ( F : A --> B -> F = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } ) | 
						
							| 2 |  | vex |  |-  a e. _V | 
						
							| 3 |  | vex |  |-  b e. _V | 
						
							| 4 | 2 3 | op1std |  |-  ( x = <. a , b >. -> ( 1st ` x ) = a ) | 
						
							| 5 | 4 | fveq2d |  |-  ( x = <. a , b >. -> ( F ` ( 1st ` x ) ) = ( F ` a ) ) | 
						
							| 6 | 2 3 | op2ndd |  |-  ( x = <. a , b >. -> ( 2nd ` x ) = b ) | 
						
							| 7 | 5 6 | eqeq12d |  |-  ( x = <. a , b >. -> ( ( F ` ( 1st ` x ) ) = ( 2nd ` x ) <-> ( F ` a ) = b ) ) | 
						
							| 8 | 7 | rabxp |  |-  { x e. ( A X. B ) | ( F ` ( 1st ` x ) ) = ( 2nd ` x ) } = { <. a , b >. | ( a e. A /\ b e. B /\ ( F ` a ) = b ) } | 
						
							| 9 |  | df-3an |  |-  ( ( a e. A /\ b e. B /\ ( F ` a ) = b ) <-> ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) ) | 
						
							| 10 | 9 | opabbii |  |-  { <. a , b >. | ( a e. A /\ b e. B /\ ( F ` a ) = b ) } = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } | 
						
							| 11 | 8 10 | eqtri |  |-  { x e. ( A X. B ) | ( F ` ( 1st ` x ) ) = ( 2nd ` x ) } = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } | 
						
							| 12 | 1 11 | eqtr4di |  |-  ( F : A --> B -> F = { x e. ( A X. B ) | ( F ` ( 1st ` x ) ) = ( 2nd ` x ) } ) |