| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fgraphopab |
|- ( F : A --> B -> F = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } ) |
| 2 |
|
vex |
|- a e. _V |
| 3 |
|
vex |
|- b e. _V |
| 4 |
2 3
|
op1std |
|- ( x = <. a , b >. -> ( 1st ` x ) = a ) |
| 5 |
4
|
fveq2d |
|- ( x = <. a , b >. -> ( F ` ( 1st ` x ) ) = ( F ` a ) ) |
| 6 |
2 3
|
op2ndd |
|- ( x = <. a , b >. -> ( 2nd ` x ) = b ) |
| 7 |
5 6
|
eqeq12d |
|- ( x = <. a , b >. -> ( ( F ` ( 1st ` x ) ) = ( 2nd ` x ) <-> ( F ` a ) = b ) ) |
| 8 |
7
|
rabxp |
|- { x e. ( A X. B ) | ( F ` ( 1st ` x ) ) = ( 2nd ` x ) } = { <. a , b >. | ( a e. A /\ b e. B /\ ( F ` a ) = b ) } |
| 9 |
|
df-3an |
|- ( ( a e. A /\ b e. B /\ ( F ` a ) = b ) <-> ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) ) |
| 10 |
9
|
opabbii |
|- { <. a , b >. | ( a e. A /\ b e. B /\ ( F ` a ) = b ) } = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } |
| 11 |
8 10
|
eqtri |
|- { x e. ( A X. B ) | ( F ` ( 1st ` x ) ) = ( 2nd ` x ) } = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } |
| 12 |
1 11
|
eqtr4di |
|- ( F : A --> B -> F = { x e. ( A X. B ) | ( F ` ( 1st ` x ) ) = ( 2nd ` x ) } ) |