| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fssxp |
|- ( F : A --> B -> F C_ ( A X. B ) ) |
| 2 |
|
dfss2 |
|- ( F C_ ( A X. B ) <-> ( F i^i ( A X. B ) ) = F ) |
| 3 |
1 2
|
sylib |
|- ( F : A --> B -> ( F i^i ( A X. B ) ) = F ) |
| 4 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 5 |
|
dffn5 |
|- ( F Fn A <-> F = ( a e. A |-> ( F ` a ) ) ) |
| 6 |
4 5
|
sylib |
|- ( F : A --> B -> F = ( a e. A |-> ( F ` a ) ) ) |
| 7 |
6
|
ineq1d |
|- ( F : A --> B -> ( F i^i ( A X. B ) ) = ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) ) |
| 8 |
3 7
|
eqtr3d |
|- ( F : A --> B -> F = ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) ) |
| 9 |
|
df-mpt |
|- ( a e. A |-> ( F ` a ) ) = { <. a , b >. | ( a e. A /\ b = ( F ` a ) ) } |
| 10 |
|
df-xp |
|- ( A X. B ) = { <. a , b >. | ( a e. A /\ b e. B ) } |
| 11 |
9 10
|
ineq12i |
|- ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) = ( { <. a , b >. | ( a e. A /\ b = ( F ` a ) ) } i^i { <. a , b >. | ( a e. A /\ b e. B ) } ) |
| 12 |
|
inopab |
|- ( { <. a , b >. | ( a e. A /\ b = ( F ` a ) ) } i^i { <. a , b >. | ( a e. A /\ b e. B ) } ) = { <. a , b >. | ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) } |
| 13 |
|
anandi |
|- ( ( a e. A /\ ( b = ( F ` a ) /\ b e. B ) ) <-> ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) ) |
| 14 |
|
ancom |
|- ( ( b = ( F ` a ) /\ b e. B ) <-> ( b e. B /\ b = ( F ` a ) ) ) |
| 15 |
14
|
anbi2i |
|- ( ( a e. A /\ ( b = ( F ` a ) /\ b e. B ) ) <-> ( a e. A /\ ( b e. B /\ b = ( F ` a ) ) ) ) |
| 16 |
|
anass |
|- ( ( ( a e. A /\ b e. B ) /\ b = ( F ` a ) ) <-> ( a e. A /\ ( b e. B /\ b = ( F ` a ) ) ) ) |
| 17 |
|
eqcom |
|- ( b = ( F ` a ) <-> ( F ` a ) = b ) |
| 18 |
17
|
anbi2i |
|- ( ( ( a e. A /\ b e. B ) /\ b = ( F ` a ) ) <-> ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) ) |
| 19 |
15 16 18
|
3bitr2i |
|- ( ( a e. A /\ ( b = ( F ` a ) /\ b e. B ) ) <-> ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) ) |
| 20 |
13 19
|
bitr3i |
|- ( ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) <-> ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) ) |
| 21 |
20
|
opabbii |
|- { <. a , b >. | ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) } = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } |
| 22 |
11 12 21
|
3eqtri |
|- ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } |
| 23 |
8 22
|
eqtrdi |
|- ( F : A --> B -> F = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } ) |