Step |
Hyp |
Ref |
Expression |
1 |
|
fssxp |
|- ( F : A --> B -> F C_ ( A X. B ) ) |
2 |
|
df-ss |
|- ( F C_ ( A X. B ) <-> ( F i^i ( A X. B ) ) = F ) |
3 |
1 2
|
sylib |
|- ( F : A --> B -> ( F i^i ( A X. B ) ) = F ) |
4 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
5 |
|
dffn5 |
|- ( F Fn A <-> F = ( a e. A |-> ( F ` a ) ) ) |
6 |
4 5
|
sylib |
|- ( F : A --> B -> F = ( a e. A |-> ( F ` a ) ) ) |
7 |
6
|
ineq1d |
|- ( F : A --> B -> ( F i^i ( A X. B ) ) = ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) ) |
8 |
3 7
|
eqtr3d |
|- ( F : A --> B -> F = ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) ) |
9 |
|
df-mpt |
|- ( a e. A |-> ( F ` a ) ) = { <. a , b >. | ( a e. A /\ b = ( F ` a ) ) } |
10 |
|
df-xp |
|- ( A X. B ) = { <. a , b >. | ( a e. A /\ b e. B ) } |
11 |
9 10
|
ineq12i |
|- ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) = ( { <. a , b >. | ( a e. A /\ b = ( F ` a ) ) } i^i { <. a , b >. | ( a e. A /\ b e. B ) } ) |
12 |
|
inopab |
|- ( { <. a , b >. | ( a e. A /\ b = ( F ` a ) ) } i^i { <. a , b >. | ( a e. A /\ b e. B ) } ) = { <. a , b >. | ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) } |
13 |
|
anandi |
|- ( ( a e. A /\ ( b = ( F ` a ) /\ b e. B ) ) <-> ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) ) |
14 |
|
ancom |
|- ( ( b = ( F ` a ) /\ b e. B ) <-> ( b e. B /\ b = ( F ` a ) ) ) |
15 |
14
|
anbi2i |
|- ( ( a e. A /\ ( b = ( F ` a ) /\ b e. B ) ) <-> ( a e. A /\ ( b e. B /\ b = ( F ` a ) ) ) ) |
16 |
|
anass |
|- ( ( ( a e. A /\ b e. B ) /\ b = ( F ` a ) ) <-> ( a e. A /\ ( b e. B /\ b = ( F ` a ) ) ) ) |
17 |
|
eqcom |
|- ( b = ( F ` a ) <-> ( F ` a ) = b ) |
18 |
17
|
anbi2i |
|- ( ( ( a e. A /\ b e. B ) /\ b = ( F ` a ) ) <-> ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) ) |
19 |
15 16 18
|
3bitr2i |
|- ( ( a e. A /\ ( b = ( F ` a ) /\ b e. B ) ) <-> ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) ) |
20 |
13 19
|
bitr3i |
|- ( ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) <-> ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) ) |
21 |
20
|
opabbii |
|- { <. a , b >. | ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) } = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } |
22 |
11 12 21
|
3eqtri |
|- ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } |
23 |
8 22
|
eqtrdi |
|- ( F : A --> B -> F = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } ) |