| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fssxp |  |-  ( F : A --> B -> F C_ ( A X. B ) ) | 
						
							| 2 |  | dfss2 |  |-  ( F C_ ( A X. B ) <-> ( F i^i ( A X. B ) ) = F ) | 
						
							| 3 | 1 2 | sylib |  |-  ( F : A --> B -> ( F i^i ( A X. B ) ) = F ) | 
						
							| 4 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 5 |  | dffn5 |  |-  ( F Fn A <-> F = ( a e. A |-> ( F ` a ) ) ) | 
						
							| 6 | 4 5 | sylib |  |-  ( F : A --> B -> F = ( a e. A |-> ( F ` a ) ) ) | 
						
							| 7 | 6 | ineq1d |  |-  ( F : A --> B -> ( F i^i ( A X. B ) ) = ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) ) | 
						
							| 8 | 3 7 | eqtr3d |  |-  ( F : A --> B -> F = ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) ) | 
						
							| 9 |  | df-mpt |  |-  ( a e. A |-> ( F ` a ) ) = { <. a , b >. | ( a e. A /\ b = ( F ` a ) ) } | 
						
							| 10 |  | df-xp |  |-  ( A X. B ) = { <. a , b >. | ( a e. A /\ b e. B ) } | 
						
							| 11 | 9 10 | ineq12i |  |-  ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) = ( { <. a , b >. | ( a e. A /\ b = ( F ` a ) ) } i^i { <. a , b >. | ( a e. A /\ b e. B ) } ) | 
						
							| 12 |  | inopab |  |-  ( { <. a , b >. | ( a e. A /\ b = ( F ` a ) ) } i^i { <. a , b >. | ( a e. A /\ b e. B ) } ) = { <. a , b >. | ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) } | 
						
							| 13 |  | anandi |  |-  ( ( a e. A /\ ( b = ( F ` a ) /\ b e. B ) ) <-> ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) ) | 
						
							| 14 |  | ancom |  |-  ( ( b = ( F ` a ) /\ b e. B ) <-> ( b e. B /\ b = ( F ` a ) ) ) | 
						
							| 15 | 14 | anbi2i |  |-  ( ( a e. A /\ ( b = ( F ` a ) /\ b e. B ) ) <-> ( a e. A /\ ( b e. B /\ b = ( F ` a ) ) ) ) | 
						
							| 16 |  | anass |  |-  ( ( ( a e. A /\ b e. B ) /\ b = ( F ` a ) ) <-> ( a e. A /\ ( b e. B /\ b = ( F ` a ) ) ) ) | 
						
							| 17 |  | eqcom |  |-  ( b = ( F ` a ) <-> ( F ` a ) = b ) | 
						
							| 18 | 17 | anbi2i |  |-  ( ( ( a e. A /\ b e. B ) /\ b = ( F ` a ) ) <-> ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) ) | 
						
							| 19 | 15 16 18 | 3bitr2i |  |-  ( ( a e. A /\ ( b = ( F ` a ) /\ b e. B ) ) <-> ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) ) | 
						
							| 20 | 13 19 | bitr3i |  |-  ( ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) <-> ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) ) | 
						
							| 21 | 20 | opabbii |  |-  { <. a , b >. | ( ( a e. A /\ b = ( F ` a ) ) /\ ( a e. A /\ b e. B ) ) } = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } | 
						
							| 22 | 11 12 21 | 3eqtri |  |-  ( ( a e. A |-> ( F ` a ) ) i^i ( A X. B ) ) = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } | 
						
							| 23 | 8 22 | eqtrdi |  |-  ( F : A --> B -> F = { <. a , b >. | ( ( a e. A /\ b e. B ) /\ ( F ` a ) = b ) } ) |