Step |
Hyp |
Ref |
Expression |
1 |
|
fssxp |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ⊆ ( 𝐴 × 𝐵 ) ) |
2 |
|
df-ss |
⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ↔ ( 𝐹 ∩ ( 𝐴 × 𝐵 ) ) = 𝐹 ) |
3 |
1 2
|
sylib |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ∩ ( 𝐴 × 𝐵 ) ) = 𝐹 ) |
4 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
5 |
|
dffn5 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ) |
6 |
4 5
|
sylib |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 = ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ) |
7 |
6
|
ineq1d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ∩ ( 𝐴 × 𝐵 ) ) = ( ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ∩ ( 𝐴 × 𝐵 ) ) ) |
8 |
3 7
|
eqtr3d |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 = ( ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ∩ ( 𝐴 × 𝐵 ) ) ) |
9 |
|
df-mpt |
⊢ ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝐴 ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) } |
10 |
|
df-xp |
⊢ ( 𝐴 × 𝐵 ) = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) } |
11 |
9 10
|
ineq12i |
⊢ ( ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ∩ ( 𝐴 × 𝐵 ) ) = ( { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝐴 ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) } ∩ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) } ) |
12 |
|
inopab |
⊢ ( { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝐴 ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) } ∩ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) } ) = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) } |
13 |
|
anandi |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ ( 𝑏 = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ∈ 𝐵 ) ) ↔ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) |
14 |
|
ancom |
⊢ ( ( 𝑏 = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ∈ 𝐵 ) ↔ ( 𝑏 ∈ 𝐵 ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ) |
15 |
14
|
anbi2i |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ ( 𝑏 = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ∈ 𝐵 ) ) ↔ ( 𝑎 ∈ 𝐴 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ) ) |
16 |
|
anass |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ↔ ( 𝑎 ∈ 𝐴 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ) ) |
17 |
|
eqcom |
⊢ ( 𝑏 = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑎 ) = 𝑏 ) |
18 |
17
|
anbi2i |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ↔ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑎 ) = 𝑏 ) ) |
19 |
15 16 18
|
3bitr2i |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ ( 𝑏 = ( 𝐹 ‘ 𝑎 ) ∧ 𝑏 ∈ 𝐵 ) ) ↔ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑎 ) = 𝑏 ) ) |
20 |
13 19
|
bitr3i |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ↔ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑎 ) = 𝑏 ) ) |
21 |
20
|
opabbii |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑎 ) = 𝑏 ) } |
22 |
11 12 21
|
3eqtri |
⊢ ( ( 𝑎 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑎 ) ) ∩ ( 𝐴 × 𝐵 ) ) = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑎 ) = 𝑏 ) } |
23 |
8 22
|
eqtrdi |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑎 ) = 𝑏 ) } ) |