| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fssxp | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  ⊆  ( 𝐴  ×  𝐵 ) ) | 
						
							| 2 |  | dfss2 | ⊢ ( 𝐹  ⊆  ( 𝐴  ×  𝐵 )  ↔  ( 𝐹  ∩  ( 𝐴  ×  𝐵 ) )  =  𝐹 ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐹  ∩  ( 𝐴  ×  𝐵 ) )  =  𝐹 ) | 
						
							| 4 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 5 |  | dffn5 | ⊢ ( 𝐹  Fn  𝐴  ↔  𝐹  =  ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 6 | 4 5 | sylib | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  =  ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 7 | 6 | ineq1d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  ( 𝐹  ∩  ( 𝐴  ×  𝐵 ) )  =  ( ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) )  ∩  ( 𝐴  ×  𝐵 ) ) ) | 
						
							| 8 | 3 7 | eqtr3d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  =  ( ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) )  ∩  ( 𝐴  ×  𝐵 ) ) ) | 
						
							| 9 |  | df-mpt | ⊢ ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) )  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( 𝑎  ∈  𝐴  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) ) } | 
						
							| 10 |  | df-xp | ⊢ ( 𝐴  ×  𝐵 )  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) } | 
						
							| 11 | 9 10 | ineq12i | ⊢ ( ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) )  ∩  ( 𝐴  ×  𝐵 ) )  =  ( { 〈 𝑎 ,  𝑏 〉  ∣  ( 𝑎  ∈  𝐴  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) ) }  ∩  { 〈 𝑎 ,  𝑏 〉  ∣  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) } ) | 
						
							| 12 |  | inopab | ⊢ ( { 〈 𝑎 ,  𝑏 〉  ∣  ( 𝑎  ∈  𝐴  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) ) }  ∩  { 〈 𝑎 ,  𝑏 〉  ∣  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) } )  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝐴  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) ) } | 
						
							| 13 |  | anandi | ⊢ ( ( 𝑎  ∈  𝐴  ∧  ( 𝑏  =  ( 𝐹 ‘ 𝑎 )  ∧  𝑏  ∈  𝐵 ) )  ↔  ( ( 𝑎  ∈  𝐴  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) ) ) | 
						
							| 14 |  | ancom | ⊢ ( ( 𝑏  =  ( 𝐹 ‘ 𝑎 )  ∧  𝑏  ∈  𝐵 )  ↔  ( 𝑏  ∈  𝐵  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 15 | 14 | anbi2i | ⊢ ( ( 𝑎  ∈  𝐴  ∧  ( 𝑏  =  ( 𝐹 ‘ 𝑎 )  ∧  𝑏  ∈  𝐵 ) )  ↔  ( 𝑎  ∈  𝐴  ∧  ( 𝑏  ∈  𝐵  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) ) ) ) | 
						
							| 16 |  | anass | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) )  ↔  ( 𝑎  ∈  𝐴  ∧  ( 𝑏  ∈  𝐵  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) ) ) ) | 
						
							| 17 |  | eqcom | ⊢ ( 𝑏  =  ( 𝐹 ‘ 𝑎 )  ↔  ( 𝐹 ‘ 𝑎 )  =  𝑏 ) | 
						
							| 18 | 17 | anbi2i | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) )  ↔  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑏 ) ) | 
						
							| 19 | 15 16 18 | 3bitr2i | ⊢ ( ( 𝑎  ∈  𝐴  ∧  ( 𝑏  =  ( 𝐹 ‘ 𝑎 )  ∧  𝑏  ∈  𝐵 ) )  ↔  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑏 ) ) | 
						
							| 20 | 13 19 | bitr3i | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  ↔  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑏 ) ) | 
						
							| 21 | 20 | opabbii | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝐴  ∧  𝑏  =  ( 𝐹 ‘ 𝑎 ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑏 ) } | 
						
							| 22 | 11 12 21 | 3eqtri | ⊢ ( ( 𝑎  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑎 ) )  ∩  ( 𝐴  ×  𝐵 ) )  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑏 ) } | 
						
							| 23 | 8 22 | eqtrdi | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑏 ) } ) |