Metamath Proof Explorer


Theorem fincygsubgd

Description: The subgroup referenced in fincygsubgodd is a subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses fincygsubgd.1
|- B = ( Base ` G )
fincygsubgd.2
|- .x. = ( .g ` G )
fincygsubgd.3
|- H = ( n e. ZZ |-> ( n .x. ( C .x. A ) ) )
fincygsubgd.4
|- ( ph -> G e. Grp )
fincygsubgd.5
|- ( ph -> A e. B )
fincygsubgd.6
|- ( ph -> C e. NN )
Assertion fincygsubgd
|- ( ph -> ran H e. ( SubGrp ` G ) )

Proof

Step Hyp Ref Expression
1 fincygsubgd.1
 |-  B = ( Base ` G )
2 fincygsubgd.2
 |-  .x. = ( .g ` G )
3 fincygsubgd.3
 |-  H = ( n e. ZZ |-> ( n .x. ( C .x. A ) ) )
4 fincygsubgd.4
 |-  ( ph -> G e. Grp )
5 fincygsubgd.5
 |-  ( ph -> A e. B )
6 fincygsubgd.6
 |-  ( ph -> C e. NN )
7 6 nnzd
 |-  ( ph -> C e. ZZ )
8 1 2 4 7 5 mulgcld
 |-  ( ph -> ( C .x. A ) e. B )
9 1 2 3 4 8 cycsubgcld
 |-  ( ph -> ran H e. ( SubGrp ` G ) )