Description: The subgroup referenced in fincygsubgodd is a subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fincygsubgd.1 | |- B = ( Base ` G ) |
|
| fincygsubgd.2 | |- .x. = ( .g ` G ) |
||
| fincygsubgd.3 | |- H = ( n e. ZZ |-> ( n .x. ( C .x. A ) ) ) |
||
| fincygsubgd.4 | |- ( ph -> G e. Grp ) |
||
| fincygsubgd.5 | |- ( ph -> A e. B ) |
||
| fincygsubgd.6 | |- ( ph -> C e. NN ) |
||
| Assertion | fincygsubgd | |- ( ph -> ran H e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fincygsubgd.1 | |- B = ( Base ` G ) |
|
| 2 | fincygsubgd.2 | |- .x. = ( .g ` G ) |
|
| 3 | fincygsubgd.3 | |- H = ( n e. ZZ |-> ( n .x. ( C .x. A ) ) ) |
|
| 4 | fincygsubgd.4 | |- ( ph -> G e. Grp ) |
|
| 5 | fincygsubgd.5 | |- ( ph -> A e. B ) |
|
| 6 | fincygsubgd.6 | |- ( ph -> C e. NN ) |
|
| 7 | 6 | nnzd | |- ( ph -> C e. ZZ ) |
| 8 | 1 2 4 7 5 | mulgcld | |- ( ph -> ( C .x. A ) e. B ) |
| 9 | 1 2 3 4 8 | cycsubgcld | |- ( ph -> ran H e. ( SubGrp ` G ) ) |