Metamath Proof Explorer
		
		
		
		Description:  The subgroup referenced in fincygsubgodd is a subgroup.  (Contributed by Rohan Ridenour, 3-Aug-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | fincygsubgd.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
					
						|  |  | fincygsubgd.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
					
						|  |  | fincygsubgd.3 | ⊢ 𝐻  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  ( 𝐶  ·  𝐴 ) ) ) | 
					
						|  |  | fincygsubgd.4 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
					
						|  |  | fincygsubgd.5 | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
					
						|  |  | fincygsubgd.6 | ⊢ ( 𝜑  →  𝐶  ∈  ℕ ) | 
				
					|  | Assertion | fincygsubgd | ⊢  ( 𝜑  →  ran  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fincygsubgd.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | fincygsubgd.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | fincygsubgd.3 | ⊢ 𝐻  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  ( 𝐶  ·  𝐴 ) ) ) | 
						
							| 4 |  | fincygsubgd.4 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 5 |  | fincygsubgd.5 | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 6 |  | fincygsubgd.6 | ⊢ ( 𝜑  →  𝐶  ∈  ℕ ) | 
						
							| 7 | 6 | nnzd | ⊢ ( 𝜑  →  𝐶  ∈  ℤ ) | 
						
							| 8 | 1 2 4 7 5 | mulgcld | ⊢ ( 𝜑  →  ( 𝐶  ·  𝐴 )  ∈  𝐵 ) | 
						
							| 9 | 1 2 3 4 8 | cycsubgcld | ⊢ ( 𝜑  →  ran  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) |