Metamath Proof Explorer
Description: The subgroup referenced in fincygsubgodd is a subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
fincygsubgd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
fincygsubgd.2 |
⊢ · = ( .g ‘ 𝐺 ) |
|
|
fincygsubgd.3 |
⊢ 𝐻 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝐶 · 𝐴 ) ) ) |
|
|
fincygsubgd.4 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
|
|
fincygsubgd.5 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
|
|
fincygsubgd.6 |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
|
Assertion |
fincygsubgd |
⊢ ( 𝜑 → ran 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fincygsubgd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
fincygsubgd.2 |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
fincygsubgd.3 |
⊢ 𝐻 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · ( 𝐶 · 𝐴 ) ) ) |
4 |
|
fincygsubgd.4 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
5 |
|
fincygsubgd.5 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
6 |
|
fincygsubgd.6 |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
7 |
6
|
nnzd |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
8 |
1 2 4 7 5
|
mulgcld |
⊢ ( 𝜑 → ( 𝐶 · 𝐴 ) ∈ 𝐵 ) |
9 |
1 2 3 4 8
|
cycsubgcld |
⊢ ( 𝜑 → ran 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |